
Informix Embedded
SQL

TP/XA Programmer’s
Manual

INFORMIX-OnLine Dynamic Server, Version 7.2x
INFORMIX-OnLine Workgroup Server, Version 7.2x
INFORMIX-OnLine XPS, Version 8.1x
INFORMIX-SE, Version 7.2x
INFORMIX-Universal Server, Version 9.1x
Version 9.13
October 1997
Part No. 000-4164

ii TP/XA Programmer’s
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright 1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX; INFORMIX-OnLine Dynamic Server; DataBlade

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript

International Business Machines Corporation: IBM; DRDA
Micro Focus Ltd.: Micro Focus; Micro Focus COBOL/2
Novell, Inc.: NetWare; IPX/SPX; TUXEDO

Ryan-McFarland (Liant) Corporation: Ryan McFarland

Sun Microsystems, Inc.: Sun Microsystems; NFS

X/Open Company Ltd.: UNIX; X/Open

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Bob Berry, Twila Booth, Evelyn Eldridge-Diaz, Smita Joshi

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.
Manual

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Types of Users 3
Software Dependencies 4
Assumptions About Your Locale. 4
Demonstration Database 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Additional Documentation 9
On-Line Manuals 9
Printed Manuals 9
Error Message Files 10
Documentation Notes, Release Notes, Machine Notes 10
Related Reading 11

Compliance with Industry Standards 11
Informix Welcomes Your Comments 12

Chapter 1 Informix and the X/Open Distributed Transaction-Processing Model
Distributed Transaction Processing 1-4

Transaction Processing 1-4
Features of a DTP System 1-5

The X/Open DTP Model 1-12
The Application Program 1-13
The Resource Manager 1-14
The Transaction Manager 1-15
The Model Interfaces 1-23

Software Products and the X/Open DTP Model 1-25
Third-Party TM Software 1-26
Informix Software for the RM 1-26
What TP/XA Can Do for You 1-29

iv TP/XA
Chapter 2 Integrating the Database Server and TP/XA into the
X/Open DTP Model
Installing Software for an X/Open DTP Environment 2-3

Installing the Transaction Manager 2-4
Installing the Informix Software 2-4
Integrating the Database Server with the TM 2-5

Monitoring Global Transactions 2-8
The Userthreads Section 2-9
The Transactions Section 2-10

Transaction Commitment and Recovery 2-11
The Database Server and the Two-Phase Commit Protocol . . 2-11
The Database Server and Heuristic Decisions 2-14

Chapter 3 Programming in an X/Open Environment
Preparing to Program in an X/Open DTP Environment 3-3

Designing Programs for an X/Open DTP Environment . . . 3-4
Identifying the Transaction Mode 3-5

Writing Server Programs for an X/Open DTP Environment . . . 3-7
Programming Considerations for Server Programs 3-8
Building Servers for an X/Open DTP Environment 3-12

Sample ESQL/C Programs 3-13
A Non-DTP ESQL/C Program 3-14
A Sample DTP ESQL/C Application Program. 3-16

Appendix A XA Routine Return Codes

Index
 Programmer’s Manual

Introduction

Introduction
About This Manual 3
Types of Users 3
Software Dependencies 4
Assumptions About Your Locale 4
Demonstration Database 5

Documentation Conventions 5
Typographical Conventions 6
Icon Conventions 7

Comment Icons 7
Feature, Product, and Platform Icons 8

Additional Documentation 9
On-Line Manuals 9
Printed Manuals 9
Error Message Files 10
Documentation Notes, Release Notes, Machine Notes 10
Related Reading 11

Compliance with Industry Standards 11

Informix Welcomes Your Comments 12

2 TP/XA
 Programmer’s Manual

Read this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual
This manual explains the use and features of the TP/XA library. As part of
INFORMIX-ESQL/C, the TP/XA library facilitates communication between a
third-party transaction manager and an Informix database server for the
purpose of distributed transaction processing (DTP) in a multivendor
database setting. This library allows the database server to operate as a
database management system (DBMS) within a Resource Manager (RM) of an
X/Open distributed transaction processing environment.

Types of Users
This manual is written for programmers and system administrators who are
developing applications for a third-party transaction manager and an
Informix database server.

If you have limited experience with relational databases, SQL, or your
operating system, see the Getting Started manual for your database server for
a list of supplementary manuals.
Introduction 3

Software Dependencies
Software Dependencies
This manual assumes that you are using the TP/XA library with
INFORMIX-ESQL/C, Version 9.13. In addition, you must use one of the
following database servers:

■ INFORMIX-OnLine Dynamic Server, Version 7.2x

■ INFORMIX-OnLine Workgroup Server, Version 7.2x

■ INFORMIX-OnLine XPS, Version 8.1x

■ INFORMIX-SE, Version 7.2x

■ INFORMIX-Universal Server, Version 9.1x

Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the INFORMIX-GLS Programmer’s Manual
and the Informix Guide to GLS Functionality.
4 TP/XA Programmer’s Manual

Demonstration Database
Demonstration Database
Your Informix software includes a demonstration database called stores7
that contains information about a fictitious wholesale sporting-goods
distributor. Informix includes source files for INFORMIX-ESQL/C demon-
stration programs that access and manipulate the data stored in stores7. Most
of the examples in this manual are based on the stores7 demonstration
database.

For information on how to install stores7 and access the code examples, see
the INFORMIX-ESQL/C Programmer’s Manual.

Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions
Introduction 5

Typographical Conventions
Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information.
6 TP/XA Programmer’s Manual

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.
Introduction 7

Icon Conventions
Feature, Product, and Platform Icons

Feature, product, and platform icons identify paragraphs that contain
feature-, product-, or platform-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature-, product-, or platform-
specific information.

Icon Description

Identifies information that is specific to the Informix Global
Language Support (GLS) feature.

Identifies information that is specific to
INFORMIX-Universal Server.

Identifies information that is specific to INFORMIX-OnLine
Dynamic Server.

Identifies information that is specific to INFORMIX-OnLine
Workgroup Server.

Identifies information that is specific to INFORMIX-SE.

Identifies information that is specific to the UNIX operating
system.

Identifies information that is specific to the Windows NT
environment.

Identifies information that is specific to the Windows 95
environment.

Identifies information that is specific to both Windows NT
and Windows 95 environments.

Identifies information that is specific to INFORMIX-OnLine
XPS.

GLS

IUS

ODS

OWS

SE

UNIX

WIN NT

WIN 95

WIN NT/95

XPS
8 TP/XA Programmer’s Manual

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message files

■ Documentation notes, release notes, and machine notes

■ Related reading

On-Line Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print on-line manuals, see the installation insert that accompanies
Answers OnLine.

Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com.

Please provide the following information:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number
Introduction 9

Error Message Files
Error Message Files
Informix software products provide ASCII files that contain all of the
Informix error messages and their corrective actions. The finderr utility
displays these error messages on the screen. See the Introduction to the
Informix Error Messages manual for a detailed description of these error
messages.

To read the error messages in the ASCII file, Informix provides scripts that let
you display error messages on the screen (finderr) or print formatted error
messages (rofferr). For a detailed description of these scripts, see the
Introduction to the Informix Error Messages manual.

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following on-line files, located in
the $INFORMIXDIR/release/en_us/0333 directory, supplement the infor-
mation in this manual.

Please examine these files because they contain vital information about
application and performance issues.

On-Line File Purpose

XADOC_9.1 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

CLIENTS_2.0 The CLIENTS_2.0 file lists the release-notes files for the 2.0 Client
SDK. These release-notes files describe feature differences from
earlier versions of Informix products and how these differences
might affect current products. These files also contain information
about any known problems and their workarounds.

ESQL/C_9.1 The machine notes file describes any special actions that are
required to configure and use Informix products on your
computer. The machine notes for TP/XA are contained in the
machine notes file for INFORMIX-ESQL/C.
10 TP/XA Programmer’s Manual

Related Reading
Related Reading
For information on the X/Open XA specification, consult Distributed Trans-
action Processing: The XA Specification by X/Open Company, Limited
(February 1992).

Compliance with Industry Standards
The TP/XA library adheres to the X/Open XA interface specification
developed by The Open Group to support large-scale, high-performance, on-
line transaction-processing applications.

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992, on Informix database servers. In addition, many features of
some Informix database servers comply with the SQL-92 Intermediate and
Full Level and X/Open SQL CAE (common applications environment)
standards.
Introduction 11

Informix Welcomes Your Comments
Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

650-926-6571

We appreciate your feedback.
12 TP/XA Programmer’s Manual

1
Chapter
Informix and the X/Open
Distributed Transaction-
Processing Model

Distributed Transaction Processing 1-4

Transaction Processing 1-4
Features of a DTP System 1-5

Client and Server Programs 1-6
Local and Global Transactions 1-7
Two-Phase Commit Protocol 1-10

The X/Open DTP Model 1-12
The Application Program 1-13
The Resource Manager 1-14
The Transaction Manager 1-15

Managing Transactions. 1-16
Assigning Transaction Identifiers 1-17
Managing Client/Server Communication 1-18
Controlling the Two-Phase Commit 1-20

The Model Interfaces 1-23
The AP-to-RM Interface 1-23
The AP-to-TM Interface 1-24
The XA Interface 1-24

Software Products and the X/Open DTP Model 1-25
Third-Party TM Software 1-26
Informix Software for the RM 1-26

The Informix Database Server as an RM 1-28
The TP/XA Library as the Server XA Interface 1-28

What TP/XA Can Do for You 1-29

1-2 TP/X
A Programmer’s Manual

Several distinct models for transaction processing have emerged in
the evolution of relational databases. Each model attempts to meet the
changing needs of the business community. The Informix solution for
distributed transaction processing (DTP) is based on the X/Open DTP model.

This chapter covers the following topics:

■ A general introduction to a DTP system

■ A description of the X/Open DTP model

■ How TP/XA and Informix database servers fit into the X/Open DTP
model

The TP/XA library is not available with the following Informix database
servers:

■ INFORMIX-SE ♦
■ INFORMIX-OnLine XPS ♦

The TP/XA library is not available on the Windows NT or Windows 95
operating systems. ♦

The TP/XA library is bundled with the following Informix SQL API products:

■ INFORMIX-ESQL/C

■ INFORMIX-ESQL/COBOL

INFORMIX-ESQL/COBOL is not available with INFORMIX-Universal Server. ♦

SE

XPS

WIN NT/95

IUS
Informix and the X/Open Distributed Transaction-Processing Model 1-3

Distributed Transaction Processing
Distributed Transaction Processing
This section provides the following information about DTP:

■ A brief introduction to transaction processing

■ A description of several features needed to support a DTP
environment

Transaction Processing
A transaction is a unit of work that consists of an application-specific
sequence of operations. A typical example of a transaction in the accounting
world might be subtracting some amount from the accounts receivable
ledger and adding the same amount to the cash ledger. The transaction
consists of the subtraction and the addition operation taken together.

A transaction-processing system defines and coordinates interactions between
multiple users and databases (or other shared resources). When a transaction
includes operations in several databases or other shared resources, the goal
of a transaction-processing system is to carry out this transaction in an
efficient, reliable, and coordinated way.

The success of any transaction-processing system is measured against four
critical objectives. Together, these objectives are known as the ACID test:

■ Atomicity

Are all operations within a transaction performed on an all-or-
nothing basis?

■ Consistency

If a transaction must be aborted, is the data returned to its previous
valid state?

■ Isolation

Are the results of a transaction invisible to other transactions until
the transaction is committed?

■ Durability

Will the results of a transaction survive subsequent system failures?
1-4 TP/XA Programmer’s Manual

Features of a DTP System
In addition to these fundamental objectives, a transaction-processing system
should have the following capabilities:

■ Performance

The transaction-processing system must be able to handle a large
number of users without a corresponding performance loss.

■ Resiliency

The transaction-processing system must be able to recover in the
event of system or computer failure.

Features of a DTP System
DTP is a form of transaction processing that supports transactions whose
operations are distributed among different computers or among databases
from different vendors. A DTP system must support all features of the general
transaction-processing system, including the ACID test properties (see
page 1-4). In addition, the DTP system must also support communication and
cooperation among shared resources that are installed at different physical
sites and are connected over a network. Databases from different vendors or
on different computers are called heterogeneous databases.

On-line transaction-processing (OLTP) applications are often run in a DTP
environment. (For a definition of OLTP applications, see the Administrator’s
Guide for your database server.) The following table lists features of a DTP
system that are useful to OLTP applications.

DTP Feature OLTP Application Feature For More Information

DTP client and server
programs

A large volume of well-defined
application requests

Small, well-defined interactions
between user and database

“Client and Server
Programs” on page 1-6

Transaction
management

Emphasis on system response “Local and Global
Transactions” on
page 1-7

Global transactions and
two-phase commit

Heavy database use of large,
shared databases (or other
resources)

“Two-Phase Commit
Protocol” on page 1-10
Informix and the X/Open Distributed Transaction-Processing Model 1-5

Features of a DTP System
Client and Server Programs

In the DTP model, an application is divided into the following parts:

■ A server program provides one or more services. A service is a single
function within the server program. It performs one database task
for the application.

■ A client program handles the user interface. It determines which
services the user needs performed. To initiate a service, the client
program sends a service request to the server program that offers that
particular service.

Important: In the DTP model, the definitions of the terms “client” and “server” differ
from their definitions in the Informix client/server architecture. In the DTP model, a
“client” is not an entire application; it is only that part of the application that handles
the user interface. In the DTP model, a “server” is not a database server but the
second part of the application, the part that handles the database communication.

Figure 1-1 shows the relationship between the client program, the server
program, and the service requests. Each instance of the application program
contains one client program and at least one server program.

The client and server are distinct programs. The client program does not
perform the database tasks. Instead, it sends a service request to a server. The
server program then initiates the execution of the desired service, a specific
operation performed by a code module that is embedded in a server. A server
program accepts requests and dispatches them to the appropriate service.

Tip: For an example of client and server programs, see “A Sample DTP ESQL/C
Application Program” on page 3-16.

Figure 1-1
Application

Program Showing
Client and Server

Programs

DTP application

Service
request

Client Server
1-6 TP/XA Programmer’s Manual

Features of a DTP System
The following list shows additional benefits of dividing an application into
client and server programs:

■ When one of the client or server programs fails, it does not affect any
other client or server processes.

■ Server programs can be located on the same computer as the
associated database server, providing centralized access for client
programs.

■ Server programs reduce redundant storage of service-related coding
at the user site.

■ Client programs can reside at the user site and can be tailored to the
needs of the user.

■ Modularity allows extension and reorganization of the client and
server programs without rewriting existing code.

These benefits allow an OLTP application to support a large volume of well-
defined application requests and to provide small, well-defined interactions
between the user and the database.

Local and Global Transactions

The DTP model supports the following types of transactions:

■ A local transaction involves only one service within a single server
program, and it accesses only one database.

■ A global transaction involves several services that might be located in
different server programs, perhaps on different computers. A global
transaction is also called a distributed transaction.

The DTP software must be able to handle both types of transactions in
support of the application.
Informix and the X/Open Distributed Transaction-Processing Model 1-7

Features of a DTP System
Figure 1-2 shows a local transaction that contains only one service request
involving only one database management system (DBMS). This DBMS
manages two databases, Database A and Database B.

An application marks the start and end of a local transaction using only local
database transaction commands such as the SQL statements BEGIN WORK,
COMMIT WORK, and ROLLBACK WORK. For more information on these SQL
statements, see the Informix Guide to SQL: Syntax. For more information on
local transactions, see page 1-16.

When the service request involves more than one server program or
database, the application must use a global transaction. To support such
transactions, the DTP model must keep track of the following types of
information:

■ Which services are in which server program

■ Which service request to send to which server process

■ From which client process a given service request originated

Without this information, the DTP model cannot ensure the integrity of the
databases in the event of a system or server failure.

Figure 1-2
A Local Transaction

Surrounded by
BEGIN WORK and

COMMIT WORK
Statements

User

Service 1

DTP application

Service request

Client

BEGIN WORK
Service 1 (Database A)

COMMIT WORK

Database
management

system

Server I

custno custname
1234 XYZ LTD
1235 XSPORTS

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Database B
1-8 TP/XA Programmer’s Manual

Features of a DTP System
To handle this information, the DTP model requires transaction-management
software, as Figure 1-3 shows.

Figure 1-3 shows a general DTP model. For the X/Open DTP model, see
Figure 1-8 on page 1-27.

To mark the start and end of a global transaction, an application program
must use special transaction-demarcation commands known to the
transaction-management software. These commands replace the database
server transaction commands, such as the SQL statements BEGIN WORK,
COMMIT WORK, and ROLLBACK WORK. For information on global transac-
tions in the X/Open DTP environment, see page 1-16.

Transactions allow an OLTP application to increase the system response by
efficiently grouping database operations.

Figure 1-3
Routing a Global Transaction

Client

Begin global transaction.
Call service 1 (database A).
Call service 2 (database C).

Commit global transaction.

Database
management

system

Transaction
management software

Application program

Service requests

Database A

custno custname
1234 XYZ LTD
1235 XSPORTS

Service 1

Server I

Service 2
Service 3

Server II

Database
management

system

Database B

custno custname
1234 XYZ LTD
1235 XSPORTS

Database C

custno custname
1234 XYZ LTD
1235 XSPORTS
Informix and the X/Open Distributed Transaction-Processing Model 1-9

Features of a DTP System
Two-Phase Commit Protocol

The DTP system must support two-phase commit to provide reliable trans-
action data. The two-phase commit protocol governs the order in which a global
transaction is committed and provides an automatic recovery mechanism in
case a system or media failure occurs during transaction execution. Every
global transaction has a coordinator and one or more participants, defined as
follows:

■ The coordinator directs the resolution of the global transaction. It
decides whether the global transaction should be committed or
aborted.

■ Each participant directs the execution of one transaction branch, which
is the part of the global transaction involving a single local database.
A global transaction includes several transaction branches in the
following situations:

❑ When an application uses multiple processes to work for a global
transaction

❑ When multiple remote applications work for the same global
transaction
1-10 TP/XA Programmer’s Manual

Features of a DTP System
The two-phase commit protocol consists of the following two phases:

■ Phase 1: Precommit phase

During this phase, the coordinator directs each participant (database
server or shared resource manager) to prepare its transaction branch
to commit. Every participant notifies the coordinator whether it can
commit its transaction branch.

The coordinator, based on the response from each participant,
decides whether to commit or abort the global transaction. It decides
to commit only if all participants indicate that they can commit their
transaction branches. If any participant indicates that it is not ready
to commit its transaction branch (or if it does not respond), the
coordinator decides to abort the global transaction. The coordinator
records its decision in its log.

■ Phase 2: Postdecision phase

Based on the decision in the precommit phase, the coordinator issues
the appropriate message to each participant. Each participant then
performs the requested action on its transaction branch and notifies
the coordinator when it is finished. The transaction branch is either
committed or aborted by all participants.

The goal of the two-phase commit protocol is to have the coordinator
determine the likelihood of success for a global transaction before the partici-
pants actually handle their individual transaction branches. Once a
participant has actually handled its transaction branch, it is very difficult to
undo the work. Some cases can cause a participant to decide how to handle
its transaction branch independently of the coordinator. For more infor-
mation about these cases, see “Heuristic Decisions” on page 1-22.

Tip: For general information on two-phase commit protocol, see the
“Administrator’s Guide” for your database server.

The two-phase commit protocol for global transactions ensures that an OLTP
application with heavy database use does not lose data in the event of system
failure.
Informix and the X/Open Distributed Transaction-Processing Model 1-11

The X/Open DTP Model
The X/Open DTP Model
The X/Open DTP model is a DTP system specified by the X/Open Company
Limited in the document Distributed TP: The XA Specification. This XA specifi-
cation describes a uniform way to structure a DTP system. Although other
DTP systems provide the same set of features as this model, they use propri-
etary methods and interfaces. The X/Open DTP model is an open model,
based on the XA specification.

When an application conforms to this model, it can use global transactions
that include multivendor database servers. A TP/XA library and the database
server enable an application developer to build OLTP applications that
conform to the X/Open XA specification.

The X/Open DTP model consists of the following parts:

■ Application program

The application program defines the boundaries of a transaction and
specifies the actions that constitute a transaction.

■ Resource Manager

The Resource Manager (RM) provides access to a shared resource.
Usually, an RM is a database server or file-access system with one or
more server programs that access the database server or file-access
system.

■ Transaction Manager

The Transaction Manager (TM) manages the routing and transaction-
processing control of service requests. It manages global transac-
tions, coordinating their resolution and any failure recovery. TM
software also lets you establish the communication links among the
client and server programs.

Each part is discussed in more detail in the following sections. For more
information on how these parts communicate, see “The Model Interfaces” on
page 1-23.
1-12 TP/XA Programmer’s Manual

The Application Program
Figure 1-4 shows a conceptual version of the X/Open DTP model.

The Application Program
In the X/Open DTP model, the application program contains the client
program of the DTP client/server structure (see page 1-6). The application
program is written by the DTP application developer and performs the
following tasks:

■ Receives a user request and turns it into the appropriate service
request(s)

■ Handles the user interface by accepting and displaying data for the
user

■ Defines the global transactions by making the appropriate
transaction-management commands (see page 1-15) to mark the
start and end of a transaction

■ Performs any local transactions through the native RM API interface
to start and end the transaction as well as to execute the actual trans-
action operations

For more information on building the application program, see Chapter 3,
“Programming in an X/Open Environment.”

Figure 1-4
The X/Open DTP

Model
Application program

Transaction
Manager

Resource
Manager

XA Interface
Informix and the X/Open Distributed Transaction-Processing Model 1-13

The Resource Manager
The Resource Manager
In an X/Open DTP environment, the RM manages a set of shared resources.
For a database application, the most commonly accessed shared resources are
databases, and these databases are managed by a DBMS. A single DBMS might
manage several independent databases.

The RM includes the following parts:

■ A DBMS that supports the following tasks:

❑ Understands how to commit or roll back a transaction

❑ Communicates with the server program in support of a service,
through the native RM API

❑ Recognizes a global transaction, accepting a transaction
identifier (XID) from the TM and mapping it to an RM-specific
XID. (For more information on global transaction identifiers
(GTRIDs), see “Assigning Transaction Identifiers” on page 1-17.)

❑ Acts as a participant in the two-phase commit and recovery,
acting on the XA requests it receives from the TM. (For more
information, see “Controlling the Two-Phase Commit” on
page 1-20.)

The DBMS software is usually provided by a third-party vendor such
as Informix. In the Informix implementation of an RM, the Informix
database server is the DBMS. To establish the Informix database
server as the RM DBMS, you must provide certain information to the
TM. For more information, see Chapter 2, “Integrating the Database
Server and TP/XA into the X/Open DTP Model.”
1-14 TP/XA Programmer’s Manual

The Transaction Manager
■ The server program that performs the following tasks:

❑ Defines the services needed by the client application program
that are supported by the associated DBMS

❑ Communicates with the DBMS in support of a service, through a
native RM API

The server program is written by the DTP application developer in a
language that supports the native RM API. In the Informix implemen-
tation of an RM, the server program is written in one of the following
SQL APIs, working through the TP/XA library:

❑ INFORMIX-ESQL/C

❑ INFORMIX-ESQL/COBOL

INFORMIX-ESQL/COBOL is not available with INFORMIX-
Universal Server. ♦

The Transaction Manager
The Transaction Manager (TM) performs the following transaction-
management tasks:

■ Manages local and global transactions

■ Assigns XIDs

■ Routes and queues service requests from a client process to the
appropriate server process

■ Acts as the coordinator in two-phase commit and recovery

The TM must know about all computers, application programs (clients),
services, and RMs (servers and DBMS systems) on its network that are
involved in global transactions. This knowledge enables the TM to coordinate
the activity among these entities.

IUS
Informix and the X/Open Distributed Transaction-Processing Model 1-15

The Transaction Manager
Managing Transactions

In an X/Open DTP environment, a single transaction can span one or several
RMs. The TM can manage both types of transactions, local (one RM) and
global (several RMs). For a general description of local and global transac-
tions, see page 1-7.

Local Transactions

A local transaction involves one service in a single RM. A local transaction can
occur in one of the following ways:

■ Under the control of the TM

The application program calls special transaction-management calls
provided as part of the AP-TM interface to begin and commit the
work in the local transaction. For more information, see “The AP-to-
TM Interface” on page 1-24.

■ Under the control of the RM

The application program uses the appropriate calls in the AP-RM, the
native RM API, to start and end the local transaction. When this API
is SQL, the application program starts the transaction with a BEGIN
WORK statement and ends the transaction with a COMMIT WORK
statement, or it uses single-statement transactions (implicit transac-
tions). For more information, see “The AP-to-RM Interface” on
page 1-23.

Global Transactions

In the X/Open DTP environment, many RMs can operate in support of the
same global transaction. For example, an application program can require
updates to several databases in several RMs in a single global transaction. The
commitment of work in one transaction branch can be contingent on trans-
action branches occurring at other RMs. RMs are typically unaware of the
work performed by other RMs. A global transaction includes more than one
RM.
1-16 TP/XA Programmer’s Manual

The Transaction Manager
Figure 1-5 shows the X/Open version of Figure 1-3 on page 1-9. Both figures
show several service requests that involve updates for three databases.

Figure 1-5 shows the roles of the RM and TM in an X/Open global trans-
action.The TM does the central coordination of global transactions. It
coordinates the work performed by the RMs in their transaction branches.
Figure 1-5 shows the global transaction has two transaction branches.

Assigning Transaction Identifiers

The TM uniquely identifies each transaction that it manages by assigning it
an XID. Each XID identifies both a global transaction and a specific transaction
branch, as follows:

■ The part of the XID that uniquely identifies the global transaction is
called a global transaction identifier (GTRID).

■ The part of the XID that uniquely identifies the transaction branch is
called a branch qualifier.

Figure 1-5
Routing an X/Open Global Transaction

Client

Begin global transaction.
Call service 1 (database A).
Call service 2 (database C).
Commit global transaction.

RM

RM

Service 1

Service 2
Service 3

TM
management

system

Service requests

DBMS

DBMS

Server I

Server II

custno custname
1234 XYZ LTD
1235 XSPORTS

custno custname
1234 XYZ LTD
1235 XSPORTS

custno custname
1234 XYZ LTD
1235 XSPORTS

Database A

Database B

Database C
Informix and the X/Open Distributed Transaction-Processing Model 1-17

The Transaction Manager
In the case of a global transaction, the TM assigns the same GTRID to all trans-
action branches associated with that transaction. The TM informs each
participating RM of the existence, commitment, or abortion of the global
transaction. The TM sends the GTRID to the RM so that the RM knows to which
global transaction its transaction branch belongs. The RM might, in turn,
translate this GTRID to its own internal XID while it works on the transaction
branch.

Managing Client/Server Communication

As discussed on page 1-6, a DTP application consists of a client program and
at least one server program, which communicate by service requests. To
coordinate the communication of the service requests, an X/Open DTP appli-
cation can use the TM.

Figure 1-6 shows how the TM manages the routing of service requests.

Figure 1-6
TM Service-Request Routing

Database
server

RM

TM
system

User

Client
Service request

Service request

Call service 2.
(Database C)

Service 2 executes,
accessing Database C

Service
confirmation

Service
confirmation

AP

Service 2
Service 3

Server II

User request

Service data

62

5

1

8 7

3

4

custno custname
1234 XYZ LTD
1235 XSPORTS

Database C
1-18 TP/XA Programmer’s Manual

The Transaction Manager
As shown in Figure 1-6 on page 1-18, the TM routes a service request in the
following steps:

1. The user enters information needed for the transaction.

2. The client program creates a service request for Service 2.

3. The client program sends this service request to the TM.

4. The TM routes the service request to the server program of the appro-
priate RM. In this case, the TM routes the request to the RM that
contains Server II, where Service 2 is located.

5. The server program, Server II, locates the Service 2 service and
executes it. In the course of this execution, the Service 2 program
accesses Database C through the associated DBMS.

6. The Server II server program sends the TM a confirmation that the
service has executed. It then sends to the TM any data that the DBMS
returned.

7. The TM routes the service confirmation to the appropriate client
program (the application program). If the service has returned any
data, the TM also routes this data to this client.

8. The client program (the application program) displays any data that
is appropriate for the user.
Informix and the X/Open Distributed Transaction-Processing Model 1-19

The Transaction Manager
To handle these service requests, the TM defines and manages a request queue,
which stores information about the state of a transaction. The request queue,
shown in Figure 1-7, is a piece of shared memory that the TM defines and
manages.

Important: Because the design and implementation of TMs is not governed by any
specification, your TM might not handle server requests as described in Figure 1-7.

Controlling the Two-Phase Commit

In an X/Open DTP model, the two-phase commit protocol is handled by the
following two parts:

■ The TM is the coordinator, directing the execution of the global
transactions.

■ Each RM is a participant, directing the execution of one transaction
branch.

For definitions of coordinators and participants, see page 1-10.

The TM controls the two-phase commit protocol in the following two phases.

Figure 1-7
The TM Request Queue

Service 1Client
TM

software
system

AP RMTM

Server

DBMS

Request queue

custno custname
1234 XYZ LTD
1235 XSPORTS

Database
1-20 TP/XA Programmer’s Manual

The Transaction Manager
Phase 1: The Precommit Phase

1. The application program initiates the two-phase commit by
notifying the TM that it wants to commit the global transaction.

2. The TM asks each RM if it is prepared to commit its transaction
branch. To do this, the TM calls the xa_prepare() XA interface routine.

3. If the RM determines that it can commit the transaction branch, it
records this information in a log and sends an affirmative reply to the
TM. If the RM cannot commit the transaction branch, it aborts it and
sends a negative reply to the TM.

Phase 2: The Postdecision Phase

1. If the TM receives any negative replies or no reply, it asks the other
RMs to abort their transaction branches by calling the xa_rollback()
XA interface routine for each one.

2. If all RM replies are affirmative, the TM first records the fact that it has
decided to commit the global transaction along with a list of the
involved RMs (excluding those that responded with a read-only
status). It then asks each RM to commit its transaction branch by
calling the xa_commit() XA interface routine for each one. The TM
forgets about the transaction branch after all xa_commit() routines
are complete.

For information on how the database server participates in the two-phase
commit, see “The Database Server and the Two-Phase Commit Protocol” on
page 2-11. For more information on the XA interface, see “The XA Interface”
on page 1-24.

Before it can call any other XA routine, the TM must first initialize the RM by
calling the xa_open() XA interface routine. When the communication
finishes, the TM closes the channel by calling xa_close(). For more infor-
mation on opening and closing RMs, see X/Open Distributed TP: The XA
Specification.
Informix and the X/Open Distributed Transaction-Processing Model 1-21

The Transaction Manager
Heuristic Decisions

If an RM aborts the work it is doing for a transaction branch during the
precommit phase (phase one), the TM aborts the transaction branch during
the postdecision phase (phase two). When the transaction branch is aborted,
all RMs are in a consistent state.

However, an RM might make a heuristic decision during the postdecision
phase. That is, an RM that is prepared to commit a transaction branch can
decide to commit or abort its work independently of the TM. If this occurs,
when the TM tells the RM to complete the transaction branch during the
postdecision phase, the RM reports that the transaction branch was either
committed or aborted.

When a participating RM makes a heuristic decision and reports its decision
to the TM, the TM returns an error message to the application. The actual text
of the error message is TM dependent. It is probably similar to one of the
following error messages:

■ Due to a heuristic decision, the work done for the specified GTRID
was aborted.

■ Due to some failure, the work done for the specified GTRID might
have been heuristically completed.

■ Due to a heuristic decision, the work done for the specified GTRID
was partially committed and partially aborted.

In the first case, the global transaction was aborted. When the state that the
RM reports matches the state that the TM requires, no problem exists because
the transaction branch was completed (either aborted or committed by all
RMs) successfully. This response means that the global system is still
consistent, and no further problem exists.

In the second and third cases, however, the TM error messages indicate that
the transaction state is unknown or mixed. (A mixed state can occur if the
transaction is partially committed and partially aborted due to a heuristic
decision made by an RM.) When the state that the RM reports does not match
the state the TM wants, the global system is now inconsistent. The system
administrator must bring the system back to a consistent state. Because
several RMs can be involved in a transaction, the first task for the system
administrator is to determine which RM made a heuristic decision. For more
information on how to determine whether an RM has made a heuristic
decision, see “The Database Server and Heuristic Decisions” on page 2-14.
1-22 TP/XA Programmer’s Manual

The Model Interfaces
The Model Interfaces
For two parts of the X/Open DTP model to communicate, they must use an
interface. An interface is a series of functions linked into the sending and
receiving programs so that each program can send and receive data. The
X/Open DTP model has three paths of communication, which result in the
following three interfaces:

■ The AP-to-RM interface (shown in Figure 1-8 on page 1-27 as AP-RM)
allows the application program to call an RM to request work that
involves neither coordination of a global transaction nor
management of the TM.

■ The AP-to-TM interface (shown in Figure 1-8 on page 1-27 as AP-TM)
lets the application program call the TM to request management of
the transaction.

■ The XA interface allows two-way communication between an RM and
the TM. The XA interface implements the two-phase commit protocol
(see page 1-20) between the RMs and the TM.

Figure 1-8 on page 1-27 shows the interfaces of the X/Open DTP model.

The AP-to-RM Interface

The AP-RM enables the application program to communicate with the RM. A
library, called the native RM API, contains functions that these two programs
use to communicate. Link this native RM API into your server program so that
it can send database requests directly to the RM. The native RM API is also
part of the database server so it can send and receive requests from the appli-
cation program.

The server program uses the native RM API when it sends SQL statements to
the database server. This protocol is independent of the underlying transport
or network protocol. The preprocessor for Informix SQL API products
automatically links the appropriate API libraries into the program.
Informix and the X/Open Distributed Transaction-Processing Model 1-23

The Model Interfaces
The AP-to-TM Interface

The TM communicates with both clients and servers through the AP-TM
interface (see Figure 1-4 on page 1-13). The TM provides these AP-TM
routines in the form of a library that is linked to both client and server
programs of the application. The AP-TM library supports assignment and
prioritization of client service requests. It also manages transactions and
buffers used for communication in global transactions.

Ideally, the proprietary AP-TM interface should adhere to a single specifi-
cation, as TP/XA adheres to the X/Open XA specification. But currently the
AP-TM for each TM vendor is unique. Therefore, to program in an X/Open
environment, you need to embed the AP-TM calls specific to your vendor’s
TM in your application.

The XA Interface

The XA interface handles the communication between the RM and TM. The
interface is a standard library of routines described in the XA specification.
The TM uses these routines to manage global transactions. The names of these
TP/XA routines, as defined by the XA specification, begin with the string xa_.
The xa_ routines must be supported by all RMs and the TM operating in the
X/Open DTP environment. When a global transaction occurs, the TM,
through the XA interface, ensures that the transaction meets all the require-
ments of the ACID test. (The ACID test requirements are discussed on
page 1-4.)

To successfully meet these requirements, the TM uses the routines of the XA
interface to accomplish the following tasks:

■ Central coordination of global transactions

When an application program calls a TM to start a global transaction,
the TM uses the XA interface to inform RMs of their transaction
branches.

■ Transaction commitment and recovery using two-phase commit
protocol

After the application program uses the native RM API, through the
AP-to-RM interface, to do work in support of the global transaction,
the TM uses the XA interface to commit or abort branches.

The xa_ routines of the XA interface are listed in Appendix A.
1-24 TP/XA Programmer’s Manual

Software Products and the X/Open DTP Model
Software Products and the X/Open DTP Model
Although the database server supports a form of DTP, it does not provide
support for the following types of DTP:

■ Distributed transactions across database servers from other DBMS
vendors (heterogeneous distributed transactions)

Informix database servers supports distributed transactions when all
the database servers are Informix database servers.

■ The X/Open model for DTP

The native DTP of the database server does not follow the X/Open
DTP model.

Tip: For more information on the DTP that is native to the database server, see the
“Administrator’s Guide” for your database server.

To handle distributed transactions in either of these cases, you can use the
following software products:

■ Third-party TM software for managing heterogeneous global
transactions

■ Informix software for creating an RM that handles the service
requests based on data managed by a database server
Informix and the X/Open Distributed Transaction-Processing Model 1-25

Third-Party TM Software
Third-Party TM Software
The TM software supervises global transactions that update databases on
multiple systems, including databases from different vendors, as long as they
support the XA specification. To be used in an X/Open DTP environment, the
third-party TM software product must provide the following features:

■ Software to provide TM functionality, as described in “The Trans-
action Manager” on page 1-15

This software must also include support for the XA routines needed
to support the TM side of the XA interface.

■ An AP-TM library to be linked into both the client application
program and the server program

■ Link scripts that facilitate building client and server programs with
access to the AP-TM library

For more information, refer to your TM documentation.

Informix Software for the RM
You need the following Informix products to create an RM in the X/Open DTP
environment:

■ The Informix database server serves as the DBMS system with which
the server program communicates.

■ The Informix SQL API products, ESQL/C and ESQL/COBOL, and the
TP/XA library support creation of the server programs that access
database server.

INFORMIX-ESQL/COBOL is not available with INFORMIX-Universal
Server. ♦

Tip: The TP/XA library is required only if the application uses global transactions.

IUS
1-26 TP/XA Programmer’s Manual

Informix Software for the RM
Figure 1-8 shows a sample X/Open DTP model that uses TP/XA and the
Informix DBMS.

Figure 1-8
The Informix

Solution for the
X/Open DTP Model

AP

RMs

Other
RM

Client

Server
TM

Informix
DBMSServer

Informix
DBMSServer

Third-party
TM

AP-RM AP-RM

SQLISQLI

SQLISQLI

TP/XA

TP/XA

AP-TM XA interface

AP-TM

XA interface
Informix and the X/Open Distributed Transaction-Processing Model 1-27

Informix Software for the RM
The Informix Database Server as an RM

The Informix database server is a multithreaded database server that
provides a flexible threading architecture for the on-line transaction-
processing environment. You can use the database server as part of an RM
within an X/Open DTP environment by performing the following actions:

■ Define the database server to the TM system. For more information,
see Chapter 2, “Integrating the Database Server and TP/XA into the
X/Open DTP Model.”

■ Use embedded SQL statements from within the server program. For
more information, see Chapter 3, “Programming in an X/Open
Environment.”

■ Link the TP/XA library into your application program. For more
information on the TP/XA library, see page 1-27.

The manner in which a TM performs its responsibilities is up to the
individual TM software designer. As a result, the Informix database server
does not know and cannot predict what tasks the TM is processing. An
Informix database server RM knows only about the work it does for a trans-
action branch, whereas the TM might be processing many other tasks. In an
XA environment, the database-server RM performs the following tasks:

■ Responds to the XA requests that it receives from the TM

■ Tracks GTRIDs for the TM

Important: In the Informix implementation of transaction branches, each branch is
treated as a separate transaction. No two transaction branches, even if they belong to
the same transaction, can share locks. For more information on locking, see the
“Administrator’s Guide” for your database server.

The TP/XA Library as the Server XA Interface

TP/XA is a library of functions that you link to your SQL API server program.
This library has the XA routines that must be present for the server program
(in the RM) to communicate with the TM. The TM uses these XA routines to
communicate global-transaction information to the server program, which,
in turn, communicates the information to the database server.

Through the TP/XA library, a server program and the database server can act
as an RM with any TM that conforms to X/Open XA specifications.
1-28 TP/XA Programmer’s Manual

What TP/XA Can Do for You
The TP/XA library fully supports the required XA interface. However, it does
not support the following optional XA interface features:

■ Asynchronous operations

■ Dynamic registration

■ Transaction association migration

Tip: For information on these optional features, refer to “Distributed TP: The XA
Specification” (February 1992) from the X/Open Company Limited.

What TP/XA Can Do for You
Using the TP/XA library, the Informix SQL API product, third-party TM
software, and your Informix database server in your OLTP applications
provides the following advantages:

■ Distributed heterogeneous transactions

The TM software supervises global transactions that update
databases on multiple systems, including databases from different
vendors, as long as they support the XA specification.

■ Tunable response times

With a TM, you can balance the workload among servers. With the
database server, you can tune the locking, data buffers, and other
performance factors within the database system. For more infor-
mation in tuning the database server, see the Performance Guide for
your database server.

■ High availability

The TM software usually has several built-in features to enhance
system availability. For example, when the transaction manager
TUXEDO System/T detects that a database server aborted abnor-
mally, System/T creates a new instance of the failed database server
and sends a message to the client. The high-availability features of
the Informix database server include on-line archiving, incremental
archiving, mirroring, and automatic fast recovery.
Informix and the X/Open Distributed Transaction-Processing Model 1-29

2
Chapter
Integrating the Database
Server and TP/XA into the
X/Open DTP Model

Installing Software for an X/Open DTP Environment 2-3

Installing the Transaction Manager 2-4
Installing the Informix Software 2-4
Integrating the Database Server with the TM 2-5

Describing the Database Server RM 2-6
Database Logging in an X/Open DTP Environment 2-8

Monitoring Global Transactions 2-8
The Userthreads Section. 2-9
The Transactions Section 2-10

Transaction Commitment and Recovery 2-11
The Database Server and the Two-Phase Commit Protocol 2-11
The Database Server and Heuristic Decisions 2-14

Causing the Database Server to Make a Heuristic Decision . . 2-15
Determining Consistency of an Informix Database 2-15
Taking Actions to Handle Database Inconsistency 2-15

2-2 TP/X
A Programmer’s Manual

In an X/Open distributed transaction processing (DTP) environment,
the Informix database server acts as a database management system (DBMS)
in an RM. When you use the database server in an X/Open DTP environment,
you must attend to additional setup requirements as well as database admin-
istration and configuration issues.

This chapter covers the following topics:

■ Installing software for an X/Open DTP environment

■ Monitoring global transactions

■ Administering the database server in the event of an aborted
transaction

This chapter assumes that you are familiar with the information in the
Administrator’s Guide for your database server.

Installing Software for an X/Open DTP Environment
To use the XA interface defined in the TP/XA library as an interface between
the database server and your transaction manager, you must install the
following products:

■ A TM that supports the X/Open specification as described in the
document “Distributed TP: The XA Specification” (February 1992) from
the X/Open Company Limited

■ The Informix database server

■ One of the following Informix SQL APIs

❑ INFORMIX-ESQL/C

❑ INFORMIX-ESQL/COBOL

INFORMIX-ESQL/COBOL is not available with INFORMIX-
Universal Server. ♦

IUS
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-3

Installing the Transaction Manager
Important: The TP/XA library, libinfxxa.a, is part of Informix SQL API products.
When you install one of these products, you automatically install this Informix XA
library.

Installing the Transaction Manager
Although Informix implements the database portion of the XA standard, the
TM configures, coordinates, and controls the X/Open DTP environment. The
individual TM software supplier configures and manages the system. You
cannot use the database server in an X/Open DTP environment if the TM
software is not installed and configured properly.

Important: For information on how to install and set up your TM product, refer to
your TM software documentation.

The TM needs information about the database server to establish its
relationship with the database server RM. For a list of the information that
you must provide to the TM, see “Integrating the Database Server with the
TM” on page 2-5.

Installing the Informix Software
To establish the database server as part of an RM in your X/Open DTP
environment, you must install two Informix products:

■ An Informix database server

■ One of the following Informix SQL API products:

❑ INFORMIX-ESQL/C

❑ INFORMIX-ESQL/COBOL

INFORMIX-ESQL/COBOL is not available with INFORMIX-
Universal Server. ♦

For instructions on how to install the database server and the SQL API, refer
to the Installation Guide for those products.

IUS
2-4 TP/XA Programmer’s Manual

Integrating the Database Server with the TM
Keep the following compatibility issues in mind when you use the TP/XA
library:

■ This library is installed as part of the SQL API.

■ This library is not compatible with versions of TP/XA earlier than 6.0.
It is compatible with versions later than Version 6.0.

■ This library is supported for both the Micro Focus (MF) COBOL/2 and
Ryan-McFarland (Liant) RM/COBOL-85 compiler.

INFORMIX-ESQL/COBOL is not available with INFORMIX-Universal
Server. ♦

■ To run applications built with ESQL/C or ESQL/COBOL, Version 5.0,
you need to recompile and link your Version 5.0 application with
files that are distributed with the TP/XA library. For details, see
“Building Servers for an X/Open DTP Environment” on page 3-12.

Integrating the Database Server with the TM
Once you install the Informix software, the database server must be
integrated as an RM in your X/Open DTP environment. To do this, you must
perform the following tasks:

■ Provide information describing the RM to the TM

■ Set up database logging

IUS
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-5

Integrating the Database Server with the TM
Describing the Database Server RM

For the TM to be able to integrate the database server as part of an RM, you
must provide the TM with the information shown in Figure 2-1.

Figure 2-1
Information That the TM Needs to Work with a Database Server RM

For information on how to provide this information to the TM, refer to your
TM documentation.

The Switch Table

The XA interface defines a structure called the switch table, which lists the
names of the xa_ routines as they are implemented in the RM. (For more infor-
mation on the xa_ routines, see “The XA Interface” on page 1-24.) In the XA
interface, this structure is called xa_switch_t and it is defined in the xa.h
header file. To be integrated into the X/Open DTP model, each RM must
identify the name of its switch table so that the TM can find the names of the
xa_ routines.

The name of the database server switch table is infx_xa_switch. You must
provide this switch table name to the TM so that it can locate the database
server xa_ routines. This switch table is defined in the database server XA
library and in the TP/XA library.

Information TM Needs Information You Must Provide For More Information

XA Switch Table Name infx_xa_switch “The Switch Table”

RM Name Name of Informix database
server. For example,
INFORMIX-Universal Server

“The RM Name” on
page 2-7

XA Routine Library
Name

libinfxxa.a “The XA Routine
Library” on page 2-7

Open String

Close String

Name of database to open

' ' (null string—a string in
which the first character is
null)

“The Open and Close
Strings” on page 2-7
2-6 TP/XA Programmer’s Manual

Integrating the Database Server with the TM
The RM Name

The RM Name is a string that identifies the RM to the TM. This string is stored
within the switch table in the name field. When you use the database server
as the DBMS of an RM, initialize this field to the name of your Informix
database server. For example, you would use the following string to specify
that INFORMIX-Universal Server is your database server:

INFORMIX-Universal Server

The Open and Close Strings

The open string and close string are the text passed as an argument to the
xa_open() and xa_close() XA interface routines, respectively. The TM calls the
xa_open() routine to initialize an RM for use in the DTP environment. The
open string contains any specific information that the RM needs. The open
string is limited to 256 characters and contains no blanks or line feeds. When
you use the database server as part of an RM, the open string specifies the
name of the database that a particular database server instance can open.

The TM calls the xa_close() routine to close a currently open RM. Once closed,
the RM cannot participate in global transactions until it is reopened. The close
string contains any information that is specific to the RM. However, the
database server does not require any close information. Therefore, you must
initialize the close string to a null string.

For more information on how to use the xa_open() and xa_close() routines,
refer to Distributed TP: The XA Specification.

The XA Routine Library

The XA Routine Library is the name of the library that contains the xa_ routines
and the switch table defined by the database server RM. This library is called
libinfxxa.a and is one of the libraries that the TM must link to the server
process of an application program (AP).
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-7

Monitoring Global Transactions
Database Logging in an X/Open DTP Environment

Databases in the X/Open DTP environment must use unbuffered logging.
Unbuffered logging ensures that the database server logical logs are always
in a consistent state and can be synchronized with the TM. If a database
created with buffered logging is opened in an X/Open DTP environment, the
database status automatically changes to unbuffered logging. The database
server supports ANSI-compliant databases as well as databases that are not
ANSI compliant.

Monitoring Global Transactions
During execution of your AP, you can track the status of global transactions
handled by the database server with the onstat utility. This utility is
described in the Administrator’s Guide. The information in this section
describes specific flag settings that indicate the status of XA-related global
transactions.

The following two sections of onstat output are useful for monitoring global
transactions:

■ The Userthreads section is generated by the -u option.

■ The Transactions section is generated by the -x option.

Within an X/Open DTP environment, the following relationships among
users, transactions, and locks must exist:

■ Locks are owned by a transaction branch.

■ Transactions can be associated with an RM (database server) thread.

■ A transaction can exist without being associated with an RM
(database server) thread.

For more information on how the database server performs locking, refer to
the Administrator’s Guide for your database server.
2-8 TP/XA Programmer’s Manual

The Userthreads Section
The Userthreads Section
To generate the Userthreads section output, use the -u option of the onstat
utility. This option produces a profile of user activity, and it refers to the
actual database threads. Figure 2-2 shows the headers of output information
that appear when you use the -u option of onstat.

The flags column in the Userthreads section refers to the status of a thread.
The following table describes the XA-related flags.

If a transaction is associated with a thread, the state of the transaction is
shown by the flags column in the Userthreads section. For more infor-
mation on the -u option of onstat, refer to the Administrator’s Guide for your
database server.

RSAM Version 9.10.UC1-- On-Line -- Up 00:06:16 -- 528 Kbytes

Userthreads
address flags sessid user tty wait tout locks nreads nwrites

Figure 2-2
onstat -u Output

Position Code Description

1 T Waiting for a transaction.

In an X/Open DTP environment, multiple database server
threads can access the same transaction, but not simultaneously.
If a request is made for a service for a global transaction, but the
transaction is busy in another service, the first request must
finish and detach from the transaction. In the meantime, the
second thread blocks, waiting for the transaction.

This situation could occur if two different services, both using
the same database server and database, tried to work on the
same global transaction simultaneously.

3 X Transaction is XA-prepared (the database server is prepared to
commit) or is currently in the process of doing so.
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-9

The Transactions Section
The Transactions Section
To generate the Transactions section output, use the -x option of the onstat
utility. This option produces information specific to the X/Open
environment. The output describes the state of the transaction. Figure 2-3
shows the headers of output information that appear when you use the -x
option of onstat.

The flags column in the Transactions section refers to the status of a trans-
action. The following table describes the XA-related flags.

For transactions that are attached to a thread, the transaction state flags
(position 2) are the same in the Userthreads (-u option) and Transactions
sections (-x option). If a transaction appears in the Transactions section but
not in the Userthreads section, the transaction is detached from a thread.

RSAM Version 9.10.UC1 -- On-Line -- Up 00:06:16 -- 528 Kbytes

Transactions
address flags user locks log begin isolation retrys coordinator

Figure 2-3
onstat -x Output

Position Code Description

1 A Transaction is owned by a user thread.

1 S A global transaction is suspended. A suspension occurs when a
user thread is no longer associated with a transaction, though
most likely it will be associated again. The suspension ensures
that the transaction branch does not reach the precommit phase.

1 C The TM is waiting for a rollback to be performed.

3 X Prepare state. This transaction is prepared to commit for XA.

5 G A global transaction is in effect.
2-10 TP/XA Programmer’s Manual

Transaction Commitment and Recovery
Transaction Commitment and Recovery
In the X/Open DTP environment, global transactions are managed by the TM.
Because a global transaction spans more than one RM, you can have database
server RMs and other RMs working together on a global transaction. The TM
tracks which RMs are involved in the transaction. Although the TM manages
the start, end, and recovery process of a global transaction, the RM performs
the actual work commitment by managing its transaction branch. That is,
when the TM tells the RM to commit, the RM commits the work that it
performed for the transaction branch.

The Database Server and the Two-Phase Commit Protocol
Consider a global transaction that consists of a withdrawal from a savings
database and a deposit into another savings database managed by another
instance of the database server. Because neither database server RM knows
about the other, the TM must ensure that the same decision, either to commit
or abort the transaction, applies to both RMs.

RM product vendors decide how their RMs handle transaction commitment
and recovery. The following sections focus on how the database server
interacts with the TM during transaction commitment and recovery.

When the database server acts as part of an RM in an X/Open DTP
environment, it relies on the following elements:

■ Communication

Communication among the TM and participating database server
RMs occurs through the XA routines that control the two-phase
commit protocol.

■ Logical-log records

Logical-log records of the transaction must be stored on stable media
to ensure data integrity and consistency if a failure occurs at a partic-
ipating database server RM.
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-11

The Database Server and the Two-Phase Commit Protocol
■ Transaction information

Transaction information must be stored in shared memory at each
participating database server RM. This requirement is important for
tracking open tblspaces, acquired locks, and other resources required
by the database server RM that works for a global transaction.

When the application sends a commit message to the TM, it initiates the
following actions in the two-phase commit protocol:

■ The precommit phase begins after all inserts, updates, and deletes
included in the global transaction are executed. During this phase,
the TM asks the database server RM to prepare to commit its trans-
action branch by calling the xa_prepare() XA interface routine.

❑ If the database server determines that it can commit the trans-
action branch, it records this information in a logical-log record
(XAPREPARE log record) and notifies the TM that the commit
succeeded.

❑ If the database server cannot commit the transaction branch, it
aborts the branch, records this information in a logical-log record
(ROLLBACK log record), and notifies the TM that the commit
failed.

■ During the postdecision phase, the TM commits or aborts the global
transaction based on the RM responses from the precommit phase
(phase one).

❑ If all replies are affirmative, the TM asks each RM to commit its
branch of the global transaction by calling the xa_commit() XA
interface routine for each RM. When this routine is called, the
database server RM writes a COMMIT log record to a logical log.

❑ If at least one negative reply exists, the TM aborts the transaction
and then asks each RM to abort its transaction branch by calling
the xa_rollback() XA interface routine. When this routine is
called, the database server RM writes a ROLLBACK log record to
a logical log.
2-12 TP/XA Programmer’s Manual

The Database Server and the Two-Phase Commit Protocol
Figure 2-4 shows the flow of information between the TM and the database
server.

Figure 2-4
Flow of Information Between the TM and Database Server During a Two-Phase Commit

xa_rollback()xa_commit()

YES NO

xa_prepare()
TM asks:

Prepared To
Commit?

Database Server
asks: Able to

commit?

XAPREPARE
logical-log record

COMMIT
logical-log record

ROLLBACK WORK
logical-log record

Database Server rolls
back transaction

branch and notifies
TM.

TM decides:
Commit: all RM can

commit
Abort: one or more

RMs cannot commit.

If this RM is not the one
causing the rollback, it rolls
back its transaction branch.

ROLLBACK
logical-log record

Database Server
notifies TM that

transaction branch
can be committed.

Database Server
notifies TM of

successful commit.

Database Server notifies
TM of unsuccessful

commit.

TM commits or
aborts global trans-
action, according to
notifications from

RMs.

Database Server
commits transaction.
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-13

The Database Server and Heuristic Decisions
The Database Server and Heuristic Decisions
When the database server RM makes a heuristic decision and aborts the trans-
action branch during the commit phase independently of the TM instructions
to the database server RM, your global system might be in an inconsistent
state. (For general information on heuristic decisions, see page 1-22.)

A heuristic decision does not, in itself, create a problem for the two-phase
commit protocol. The decision by the database server to roll back a trans-
action branch becomes a problem only when both of the following conditions
are true:

■ The participating database server RM makes the heuristic decision to
roll back its transaction branch after the TM receives notification that
this RM can commit its branch.

■ The TM decides to commit the global transaction and instructs all
participating RMs to commit their transaction branches.

If a database server RM participating in a global transaction heuristically rolls
back a transaction branch and both of these conditions are true, the global
transaction-processing system is in an inconsistent state. That is, some partic-
ipating RMs committed their transaction branches while at least one database
server RM aborted its transaction branch.

In this case, the TM error messages indicate that the transaction state is
unknown or mixed (partially committed and partially aborted). The system
administrator must decide what actions should be taken to return the system
to a consistent state.

The administrator must first determine which RM made a heuristic decision.
If this RM uses a database server, the administrator needs to know the
answers to the following questions:

■ Why would a database server RM make a heuristic decision?

■ How do you determine whether an Informix database contains
inconsistent data?

■ What actions do you need to perform to bring an Informix database
back to a consistent state?
2-14 TP/XA Programmer’s Manual

The Database Server and Heuristic Decisions
Causing the Database Server to Make a Heuristic Decision

A likely cause of a heuristic decision by a database server RM is a long trans-
action (LTX). An LTX occurs when the logical log fills to the point defined by
one of the long-transaction high-water marks (configuration-file parameters
LTXHWM or LTXEHWM). The source of an LTX condition is work being
performed for a global transaction. For more information about long transac-
tions, see the Administrator’s Guide for your database server.

Determining Consistency of an Informix Database

If database inconsistency is possible because of a heuristic decision by a
database server RM, check the logical logs for the following combination of
logical-log records:

■ The XAPREPARE logical-log record, seen only in an X/Open DTP
environment, indicates the ability of the database server RM to
commit the transaction branch, when the TM instructs it to do so.

■ The HEURTX logical-log record indicates a heuristic decision that the
database server RM made to abort its transaction branch.

■ The ROLLBACK logical-log record indicates that the database server
RM aborted its transaction branch.

For more information about logical-log records and heuristic decisions, see
the Administrator’s Guide for your database server.

Taking Actions to Handle Database Inconsistency

If you find that your Informix database is in an inconsistent state, you have
the following options:

■ Leave the database in its inconsistent state

■ Recover from the inconsistent state

As you consider your options, remember that no automatic process or utility
can perform a rollback of a committed transaction or can commit part of a
transaction that is rolled back. Although the database server logical-log
records can show the affected transaction, you cannot determine what work
transpired from the messages alone. It is your responsibility, based on your
knowledge of your application and global system, to determine which option
to take.
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-15

The Database Server and Heuristic Decisions
You might consider the other RMs involved in this particular global trans-
action and the TM to make this decision. Recovery in an X/Open DTP system
not only requires knowledge of the database server RM but also knowledge
of how each independent software component is designed to recover from a
database inconsistency.

Leaving the Database in an Inconsistent State

You might decide to leave the database in its inconsistent state if the
transaction does not significantly affect database data. This situation occurs
if you decide that the application can remain inconsistent because the price
(in time and effort) of returning the database to a consistent state (by either
rolling back or committing the transaction) is too high.

Recovering from a Database Inconsistency

If you cannot leave the database in an inconsistent state, use the database
server logical log to determine how you want to recover from the inconsistent
state. You must determine which of the following actions to take for the trans-
action in question:

■ Roll back (abort) the effects of the global transaction wherever it was
committed

■ Commit the effects of the global transaction wherever it was rolled
back

To determine which of these actions to take, perform the following steps:

1. Obtain the local XID from the HEURTX logical-log record at the
database server RM where the transaction rolled back.

The transaction that rolled back has a HEURTX record associated with
it. The HEURTX record contains the local transaction identification
number (local XID). You can use the local XID to locate all associated
log records that rolled back as part of this piece of work.

2. Look for an XAPREPARE logical-log record for the local XID and
obtain the GTRID.
2-16 TP/XA Programmer’s Manual

The Database Server and Heuristic Decisions
3. At each possible participating database server RM site, search logical
logs for the GTRID associated with the heuristic completion.

4. Use the records and your knowledge of the application to construct
a compensating transaction that either rolls back the committed
effects of the transaction or commits the work that was rolled back.

Tip: TM logging information is probably the best source of information when deter-
mining which RMs participated in a global transaction. For information about how
to recover from a mixed or unknown transaction state, refer to your TM
documentation.
Integrating the Database Server and TP/XA into the X/Open DTP Model 2-17

3
Chapter
Programming in an X/Open
Environment
Preparing to Program in an X/Open DTP Environment 3-3
Designing Programs for an X/Open DTP Environment 3-4
Identifying the Transaction Mode 3-5

Local Transactions 3-5
Global Transactions 3-6

Writing Server Programs for an X/Open DTP Environment 3-7
Programming Considerations for Server Programs 3-8

Using Cursors 3-8
Using Temporary Tables 3-8
Using Locking 3-9
Using SQL Statements 3-9

Building Servers for an X/Open DTP Environment 3-12

Sample ESQL/C Programs 3-13
A Non-DTP ESQL/C Program 3-14
A Sample DTP ESQL/C Application Program 3-16

Sample Client Program. 3-17
Sample Server Program 3-21

3-2 TP/X
A Programmer’s Manual

To help you create an application program for the X/Open DTP
environment, this chapter covers the following topics:

■ Preparing to program in an X/Open DTP environment

■ Developing client and server programs in an X/Open DTP
environment

This chapter assumes that you are familiar with the information in the
Informix Guide to SQL: Syntax and one of the following SQL API manuals:

■ INFORMIX-ESQL/C Programmer’s Manual

■ INFORMIX-ESQL/COBOL Programmer’s Manual

INFORMIX-ESQL/COBOL is not available with INFORMIX-Universal
Server. ♦

Preparing to Program in an X/Open DTP Environment
Application programming in an X/Open DTP environment is not too
different from application programming in any other environment. Many of
the Informix embedded-language statements that you use in programs
designed for a non-X/Open DTP environment remain unchanged. In an
X/Open DTP environment, however, you must make some programming
adjustments.

IUS
Programming in an X/Open Environment 3-3

Designing Programs for an X/Open DTP Environment
Designing Programs for an X/Open DTP Environment
When you design programs for an X/Open DTP environment, you must
create an application that includes client programs, services, and server
programs:

■ A client program takes user input and sends it in the form of a service
request to a server program. The client program accesses the services
that a server offers. Most importantly, the client program interfaces
with the user. For example, a client program might request data from
the user as inputs to a program, or it might return data to the user
after inputs are processed.

In an Informix X/Open DTP environment, a client might be a
C program that gets input from the user and marks transaction
boundaries using calls to the TM through the AP-TM library. It can
also use AP-TM calls to send server requests to a server program.

■ A server is a program that provides one or more services. A server
receives requests from a client and initiates execution of the appro-
priate service. A service could perform a single database task (one
service) or many database tasks (many services).

In an Informix X/Open DTP environment, to create a server you can
write a module of services in an SQL API, such as ESQL/C, and group
related services into a module, the server program.

■ A service is a module of SQL API code that performs some database
task for the application. A service typically accesses a database to
perform queries or update information. The services can commu-
nicate with the TM (through calls to the AP-TM) to mark transaction
boundaries and to return messages to the client program. They also
communicate with the RM (through SQL statements) to access
database information.

In an Informix X/Open DTP environment, to create a service, you can
write a function with one of the Informix SQL APIs. For example, the
service could be a program that is designed to record deposits into
bank accounts. The service could access an Informix database
through a database server RM and update a column in an accounts
table.
3-4 TP/XA Programmer’s Manual

Identifying the Transaction Mode
For more information on clients, servers, and services, see “Client and Server
Programs” on page 1-6 and “Managing Client/Server Communication” on
page 1-18. For information on how to build server processes, see “Building
Servers for an X/Open DTP Environment” on page 3-12.

Identifying the Transaction Mode
Your programming adjustments depend largely on the transaction mode in
which your program or service is designed to execute. A transaction mode
can be either global or local. Once you know the transaction mode, you can
write a program that is designed to execute within a global transaction, a
local transaction, or both.

Tip: Regardless of the transaction mode used, the service program does not need to
include the XA interface routines. These routines are used only by the TM to commu-
nicate with the RMs.

The next sections describe each type of transaction.

Local Transactions

A local transaction accesses a single database and a single service. Local
transactions do not invoke the XA interface. A program written for an
Informix transaction-processing environment uses local transactions, either
implicit or explicit. This type of program (if it is to continue using local trans-
actions), involves little change to run in an X/Open DTP environment. If you
choose to use the TM to handle client/server communication (page 1-18), you
must add the appropriate message routines from the AP-TM library to the
server program.

The two types of local transactions are implicit and explicit.

Implicit Local Transactions

The database server RM defines an implicit local transaction for each SQL
statement that modifies the database but is not preceded by a BEGIN WORK
statement and followed by a COMMIT WORK statement. For example, the
following statement is an implicit local transaction:

INSERT INTO manufact VALUES ('BBS', 'Big Boy Sports')
Programming in an X/Open Environment 3-5

Identifying the Transaction Mode
In this case, if this single SQL statement is successful, the database server RM
commits the transaction, saving the new manufact row. If this INSERT fails,
the database server RM rolls back the transaction and the new manufact row
is not saved.

Explicit Local Transactions

An explicit local transaction can be executed under the control of either of the
following managers:

■ The RM

An explicit local transaction is an SQL statement (or set of statements)
preceded by a BEGIN WORK statement and followed by a COMMIT
WORK statement. These SQL statements mark transaction bound-
aries. For example, the following SQL statements are considered to be
a single explicit local transaction:

BEGIN WORK
LOCK TABLE stock
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = 'KAR'
DELETE FROM stock WHERE description = 'baseball bat'
COMMIT WORK

■ The TM

An explicit local transaction is identical to a transaction under the
control of an RM except that the application makes a call to the trans-
action manager to begin and commit the work. For the specific
statements to begin and commit a local transaction under the control
of your TM, consult your TM manual.

Global Transactions

A global transaction is a transaction that can span more than one service,
database server, and RM. Global transactions are identified and controlled by
the TM, which uses the XA interface to communicate with each participating
RM. When you write a program that has the potential to execute as part of a
global transaction, it must adhere to certain guidelines to execute success-
fully in an X/Open DTP environment.
3-6 TP/XA Programmer’s Manual

Writing Server Programs for an X/Open DTP Environment
A program written for an Informix transaction-processing environment does
require some modification to use global transactions in an X/Open DTP
environment. It must contain the appropriate AP-TM calls to perform the
following tasks:

■ Mark the start and end of the global transaction

■ Handle client/server communication

However, you do not need to modify the program to use the XA interface
because the XA routines that allow the RM and servers to communicate are
never called directly by the server program.

Writing Server Programs for an X/Open DTP
Environment
This section contains the following information about writing server
programs:

■ Programming considerations when you use SQL within an X/Open
DTP application program

■ Steps for building a server program so that it links in the appropriate
XA, AP-TM, and AP-RM interfaces

■ Sample ESQL/C programs that demonstrate the changes needed to
convert a non-DTP ESQL/C program to one for an X/Open DTP
environment

You make similar changes to tailor an existing ESQL/COBOL
program for an X/Open DTP environment. ♦

INFORMIX-ESQL/COBOL is not available with INFORMIX-Universal
Server. ♦

ODS

OWS

IUS
Programming in an X/Open Environment 3-7

Programming Considerations for Server Programs
Programming Considerations for Server Programs
In general, programming a server program involves creating ESQL programs,
or services, to access a specific database server. The following sections list the
differences of which you should be aware of when you use Informix products
in an X/Open DTP environment.

Using Cursors

Database cursors can be used in any transaction mode. However, you must
declare, open, and close the cursor within a single service. In programming
terms, a single service can be defined as follows:

■ A single service starts with a call to the xa_start() XA interface
routine, which passes a TMJOIN flag or no flag at all (TMNOFLAGS).

■ A single service ends with a call to the xa_end() XA interface routine,
which passes either the TMSUCCESS or TMFAIL parameters (but not
TMSUSPEND). This allows you to have any number of
xa_end(TMSUSPEND) and xa_start(TMRESUME) calls in a program
provided you delimit them with an xa_start() and xa_end().

In addition, you are guaranteed that any cursors or temporary tables
associated with the single service can survive until you call xa_end()
(with TMSUCCESS or TMFAIL) to end the service.

Once a service is exited, any cursors in that service cannot be used. If you
attempt to use a cursor in a service other than the one in which it was
declared, the database server returns an error.

For details about XA interface routines, see Distributed TP: The XA Specification
(February 1992) from X/Open Company Limited.

Using Temporary Tables

Temporary tables can be used in any transaction mode. However, you must
create and use the temporary table within a single service. The temporary table
is dropped when you exit from a service.
3-8 TP/XA Programmer’s Manual

Programming Considerations for Server Programs
Using Locking

You can use locking in any transaction mode. However, an important
restriction exists on locking. Informix implements each transaction branch as
a separate transaction. Therefore, no two transaction branches can share
locks. This restriction applies even when the transaction branches belong to
the same global transaction.

For more information on how the database server performs locking, refer to
the Administrator’s Guide for your database server.

Using SQL Statements

You can use almost all SQL statements in an X/Open DTP environment in
either local or global transaction mode. However, some statements might
behave differently than if they were in a non-X/Open DTP environment (see
Figure 3-1), or they might return an error when they are involved in a global
transaction (see Figure 3-2 on page 3-11).

Figure 3-1
 Behavior of SQL Statements in an X/Open DTP Environment

Statement Special Behavior

CLOSE DATABASE If you issue a CLOSE DATABASE statement in an X/Open DTP
environment, you receive an error.

CONNECT The current database for a group of servers is set by the open
string. If you issue a CONNECT statement in an X/Open DTP
environment, you receive an error.

CREATE DATABASE If you issue a CREATE DATABASE statement in an X/Open
DTP environment, you receive an error.

DATABASE The current database for a group of servers is set by the open
string. If you issue a DATABASE statement in an X/Open DTP
environment, you receive an error.

DISCONNECT If you issue a DISCONNECT statement in an X/Open DTP
environment, you receive an error.

LOCK TABLE If you issue a LOCK TABLE statement within a global trans-
action, it remains in effect until the completion of the
transaction branch.

(1 of 2)
Programming in an X/Open Environment 3-9

Programming Considerations for Server Programs
SET CONNECTION If you issue a SET CONNECTION statement in an X/Open DTP
environment, you receive an error.

SET ISOLATION The current isolation level of a database remains in effect
unless you change the isolation level from within a service.
When you change an isolation level, the change remains in
effect until the next modification or until the transaction
branch ends.

SET EXPLAIN The default setting for SET EXPLAIN is off. Once you issue a
SET EXPLAIN ON statement, all subsequent query access
procedures are written to a file, sqexplain.out, until the
service ends or a SET EXPLAIN OFF statement is issued. The
sqexplain.out file is stored in the current directory where the
database server is running.

SET LOCK MODE The current lock mode and time-out period remain constant
throughout a service unless it is modified in the service. If
you change the lock mode, the change remains in effect until
the next modification or until the service ends. The SET LOCK
MODE statement takes effect only when the time-out period
is shorter than the period that the TM software specifies.

SET LOG You must create databases in an X/Open DTP environment
with unbuffered logging. If you create a database with
buffered logging, the database status automatically changes
to unbuffered logging when the database is opened in an
X/Open DTP environment. If you issue a SET LOG statement
in an X/Open DTP environment, you receive an error.

UNLOCK TABLE If you issue an UNLOCK TABLE statement from within any
transaction branch, you receive an error.

BEGIN WORK If you issue a BEGIN WORK statement within a global trans-
action, you receive an error.

COMMIT WORK If you issue a COMMIT WORK statement within a global
transaction, you receive an error.

ROLLBACK WORK If you issue a ROLLBACK WORK statement within a global
transaction, you receive an error.

Statement Special Behavior

(2 of 2)
3-10 TP/XA Programmer’s Manual

Programming Considerations for Server Programs
Figure 3-2 summarizes the return behavior of the statements listed in
Figure 3-1 on page 3-9 from an X/Open DTP global or local transaction.

Figure 3-2
 Return Behavior of SQL Statements in Local and Global Transactions

Statement Local
Transaction Within a Global Transaction Within a Local Transaction

BEGIN WORK Returns an error Executes

CLOSE DATABASE Returns an error Returns an error

COMMIT WORK Returns an error Executes

CREATE
DATABASE

Returns an error Returns an error

DATABASE Returns an error Returns an error

LOCK TABLE Statement remains in effect
until the end of the global
transaction. All locks are
released at the end of the
transaction.

All table locks are released at
the end of the global
transaction.

ROLLBACK WORK Returns an error Executes

SET EXPLAIN The file sqexplain.out is
stored in the current directory
on the computer on which the
server is running.

The file sqexplain.out is
stored in your home
directory.

SET ISOLATION If you change the isolation
level within a service, the
changes remain in effect until
the next change or until the
service ends.

If you change the isolation
level, the change remains in
effect until the next change or
until the program ends.

SET LOCK MODE SET LOCK MODE takes effect
only when the time-out
period is shorter than the
period specified by the TM
software.

SET LOCK MODE takes effect
when issued.

SET LOG Returns an error Returns an error

UNLOCK TABLE Returns an error Returns an error
Programming in an X/Open Environment 3-11

Building Servers for an X/Open DTP Environment
For a full description of the SQL statements listed in Figure 3-2 on page 3-11,
refer to the Informix Guide to SQL: Syntax.

Building Servers for an X/Open DTP Environment
You can build a server program in one of the following ways:

■ Use the commands and options provided by your TM product to
create a server for an X/Open DTP environment. For instructions on
how to link the TP/XA and AP-TM libraries to your server program,
refer to your TM documentation. Also refer to the TP/XA documen-
tation notes.

■ You can build an ESQL/C server program manually using the
ESQL/C preprocessor, esql.

This section describes the second method of building a server process. To
build an ESQL/C server process manually, you must first preprocess the
server program and then link the object (.o) files with the TP/XA library, as
follows:

1. Execute the esql command with the -c command-line option, as the
following example shows:

esql -c srvrprog.ec

The -c option is not recognized by esql, so it is passed through to the
C compiler (cc, by default). This option suppresses the link phase of
the compilation.

2. Use the -libs option to obtain the list of Informix API libraries that
esql links to create an ESQL/C program, as the following example
shows:

esql -libs

3. Link the object file created in step 1 with the TP/XA library called
$INFORMIXDIR/lib/esql/libinfxxa, as the following example shows:

cc -o srvrprog srvrprog.o \
$INFORMIXDIR/lib/esql/libinfxxa.a <LIBS>

In the preceding cc command, <LIBS> represents the other ESQL/C
libraries required to create an executable ESQL/C program. You
obtained this list of libraries in step 2.

E/C
3-12 TP/XA Programmer’s Manual

Sample ESQL/C Programs
On some computers, you can preprocess the server program and link it in one
step, as the following example shows:

esql srvrprog.ec -o srvrprog $INFORMIXDIR/lib/esql/libinfxxa.a

Important: If you are using ESQL/C, Version 5.0 or earlier, you must link the object
file ixacursor.o (in $INFORMIXDIR/lib/esql) before the libinfxxa.a TP/XA library.

The libraries linked with the server program provide the following interfaces
for the server:

■ The $INFORMIXDIR/lib/esql/libinfxxa.a library provides the server
program with the Informix implementation of the XA interface.

■ The <LIBS> libraries provide the server program with the native AP-
RM interface so that the server can communicate with the database
server RM. ♦

Sample ESQL/C Programs
The actual programming changes that you make when you create programs
with INFORMIX-ESQL/C in an X/Open DTP environment are minor.
However, the way that you design the program is quite different than the
way that you would design it for a non-X/Open DTP environment. For more
information, see “Designing Programs for an X/Open DTP Environment” on
page 3-4.

This section takes an ESQL/C program and shows one way to redesign the
program for an X/Open DTP environment. It contains the following two
ESQL/C programs:

■ A non-DTP ESQL/C program that performs both user interactions
and database interactions

■ An ESQL/C AP for the X/Open DTP environment that includes two
programs, a client and a server

Each program lets you update the unit price of a product for a chosen
manufacturer using the stores7 database. (For information about the stores7
database, refer to the Informix Guide to SQL: Reference.)

E/C
Programming in an X/Open Environment 3-13

A Non-DTP ESQL/C Program
A Non-DTP ESQL/C Program
The upstock.ec program is a small non-DTP application. It is not divided into
a client and server process; instead, it performs user and database interaction
in the same ESQL/C program. The program prompts the user for the
manufacturer code, the stock number, and the percentage that the user wants
to increase the unit price of the product. With this information, it takes the
following actions:

■ Retrieves the row from the stock table that matches the specified
manufacturer code and stock number

■ Displays the stock number, description, and unit price of the stock
item

■ Calculates the new unit price for the stock item

■ Asks the user whether it should update the unit price

Figure 3-3 shows the upstock.ec program.

Figure 3-3
Sample ESQL/C Program That Updates the Unit Price in the stock Table

/*

 * upstock.ec *

 The following program fetches rows from the stock table for a chosen
 manufacturer and allows the user to selectively update the unit_price by a
 specified percent. The program prompts the user for the manufacturer code
 and stock number, and then the percent of the price increase.
*/

#include <stdio.h>
#include <ctype.h>
#include <decimal.h>

EXEC SQL include sqltypes.h;

#define LCASE(c) (isalpha(c) ? (isupper(c) ? tolower(c) : c) : c)

char decdsply[20];
char format[] = '($$,$$$,$$$.&&)';

EXEC SQL BEGIN DECLARE SECTION;
short stock_num;
char description[16];
dec_t unit_price;

EXEC SQL END DECLARE SECTION;

char errmsg[400];

main()
{

3-14 TP/XA Programmer’s Manual

A Non-DTP ESQL/C Program
EXEC SQL BEGIN DECLARE SECTION;
char manu_code[4];

EXEC SQL END DECLARE SECTION;

char stockin[4];
dec_t dprcnt;
float prcnt;
char ans;

EXEC SQL connect to 'stores7'; /* open the stores7 database */
err_chk('"CONNECT TO stores7");
EXEC SQL declare upcurs cursor for /* setup cursor for update */

select stock_num, description, unit_price from maryl.stock
where manu_code = :manu_code and stock_num = :stock_num
for update of unit_price;

err_chk("DECLARE upcurs");

/*
 Accept user inputs: Mfr code, stock_num, & percent
 */
printf("\n\tEnter Mfr. code: "); /* prompt for Mfr. code */
gets(manu_code); /* enter Mfr. code */
rupshift(manu_code); /* Mfr. code to upper case */
printf("\n\tEnter stock_num: "); /* prompt for stock_num */
gets(stockin); /* enter stock_num */
stock_num = atoi(stockin); /* convert to int */

printf("\n\tEnter Percent (whole number): "); /* prompt for % of increase */
scanf("%f", &prcnt); /* enter % of price increase */
prcnt = 1 + prcnt / 100.0; /* convert to multiplier */
deccvdbl(prcnt, &dprcnt); /* convert to DECIMAL type */
EXEC SQL open upcurs; /* open cursor */
err_chk("OPEN upcurs");

/*
 Display column headings
 */
printf("\nStock # \tDescription \tUnit Price");
EXEC SQL fetch upcurs into :stock_num, :description, :unit_price;
if(!err_chk("FETCH upcurs"))

{
printf("\n\n\t*** Row not found ***\n");
exit();
}

if(risnull(CDECIMALTYPE, &unit_price)) /* Skip if price NULL */
{
printf("unit_price is NULL");
exit();
}

rfmtdec(&unit_price, format, decdsply); /* Format unit_price */

/*
 Display item's stock_num, description and unit_price
 */
printf("\n\t%d\t%15s\t%s", stock_num, description, decdsply);

/*
 Calculate the new unit_price
 */
decmul(&unit_price, &dprcnt, &unit_price);
rfmtdec(&unit_price, format, decdsply); /* format for display */
Programming in an X/Open Environment 3-15

A Sample DTP ESQL/C Application Program
ans = ' ';
/*
 Update unit_price? y(es) or n(o)
 */
while((ans = LCASE(ans)) != 'y' && ans != 'n')

{
printf("\n\t. . . Update unit_price to %s ? (y/n) ", decdsply);
scanf("%1s", &ans);
}

if(ans == 'y') /* if yes, update current row */
{
EXEC SQL update stock set unit_price = :unit_price

where current of upcurs;
err_chk("UPDATE stock");
}

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{

if(sqlca.sqlcode < 0)
{
rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
printf("\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
exit(1);
}

return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
}

A Sample DTP ESQL/C Application Program
The upstock.ec program, as Figure 3-3 on page 3-14 shows, performs the
client and server tasks. It interacts with the user, taking the data that the user
provides and performs an update on a table in a database. To perform the
same actions in an X/Open DTP environment, you need to divide the
upstock.ec program into the following two programs.

■ The client program handles the user interface.

■ The server program handles the database interface.

The following sections show a sample client and server program for the
upstock program. Most of the code for these two programs is pseudocode
because the actual AP-TM calls and the way client/server connections are
implemented are TM specific. Lines of code prefixed with OLTP are intended
for a TM. To enable your AP to communicate with a TM, embed in your appli-
cation the AP-TM calls provided by the TM software.
3-16 TP/XA Programmer’s Manual

A Sample DTP ESQL/C Application Program
Important: These sample client and server programs handle a local implicit transac-
tion and therefore do not make use of the XA interface.

For specific information on how to write client, service, and server programs,
refer to your TM manual.

Sample Client Program

The client program, client.c, is a C program that performs the user interface
portion of the upstock.ec program. For example, the Enter Mfr. Code
prompt or the Update unit_price? prompt is user-supplied information
that is included in the client program.

As Figure 3-4 on page 3-18 shows, client.c performs the following tasks:

1. It prompts the user for the manufacturer code, stock number, and
percentage of price increase.

2. It connects to the server program by calling the OLTPCALL()
function, requesting the QUERYSTO service to query the stock unit
price.

3. It receives the information from the server program and uses the
OLTPGET() function to retrieve this information from the message
buffer. The information returned by QUERYSTO appears, and the
user sees the prompt Do you want to update this record?

4. If the user chooses to update, the client program calls OPTPCALL()
again, this time to request the UPDATESTO service to update the
stock unit price.

Important: In this example, the OLTPCALL(), OLTPGET(), and OLTPFREE()
functions are pseudofunctions. In an actual application, use the appropriate AP-TM
calls of your TM interface to perform these tasks.
Programming in an X/Open Environment 3-17

A Sample DTP ESQL/C Application Program
Figure 3-4 shows the sample client program, client.c.

Figure 3-4
Sample Pseudocode for Client Program Called client.c

/*
 ** client.c **
 The following client program prompts the user for the manufacturer code,
 stock number, and the percent of the price increase and then passes the data
 to the server program that requests the QUERYSTO and UPDATESTO services.
*/

#include <stdio.h>
#include <ctype.h>
#include <decimal.h>

/* include decimal type structure */
struct decimal

{
short dec_exp; /* exponent base 100 */
short dec_pos; /* sign: 1=pos, 0=neg, -1=null) */

short dec_ndgts; /* number of significant digit */
short dec_dgts; /* actual digit base 100 */
};

/* Pseudocode to include any OLTP header files that are needed. */

#include <OLTPXA.h>
.
.
.
#include 'upstock.h'

struct app_buffer
{
char u_manu_code[4];
int u_stock_code;
char u_stock_des[100];
float u_percent;
char u_errmsg[100];
decimal u_unit_price;
}

.

.

.
/* End of OLTP header files */

#define LCASE(c) (isalpha(c) ? (isupper(c) ? tolower(c) : c) : c)

char decdsply[20];
char format[] = '($$,$$$,$$$.&&)';
decimal unit_price;
char description[16];

char errmsg[400];

main()
{

3-18 TP/XA Programmer’s Manual

A Sample DTP ESQL/C Application Program
 char manu_code[4];
 char stockin[4];
 float prcnt;
 char ans;
 struct app_buffer *audv; /* Pointer points to message buffer */
 int audv_len;

 /* Pseudocode to join application */
if (OLTPINIT() == -1)

{
fprintf(stderr,"Failure to join application\n");
exit(-1);
}

 /* End of pseudocode that joins application */
/* Pseudocode that allocates message buffer */
audv = (struct app_buffer *);

 OLTPALLOCATE(TYPE, "app_buffer", sizeof(struct audv));
/* End of pseudocode that allocates message buffer */

 /* Prepare and initialize structure */
 void strcpy(audv->u_manu_code," ");
 audv->u_stock_code = 0;
 void strcpy(audv->u_stock_des,"\0");

 audv->u_percent = 0;
 void strcpy(audv->u_errmsg,"\0");
 /* End of Prepare and initialize structure */

 system("clear"); /* Clean up the screen */
 printf("\n\tEnter Mfr. code: "); /* prompt for manu_code */
 gets(manu_code); /* get manu_code */
 rupshift(manu_code); /* change manu_code to uppercase */

 printf("\n\tEnter Stock number: "); /* prompt for stock_num */
 gets(stockin); /* get stock_num */
 stock_num = atoi(stockin); /* convert stock_num to integer */

 /* prompt for % of increase */
 printf("\tEnter Percent (whole number): ");
 scanf("%f", &prcnt); /* get % of price increase */
 prcnt = 1 + prcnt / 100.0; /* convert % to multiplier */

 /* Place data in message buffer */
 void strcpy(audv->u_manu_code,manu_code);
 audv->u_stock_code = stock_num;
 audv->u_percent = prcent;

 /* End of placing data in message buffer */

 /* Display column headings */
 printf("\nStock # \tDescription \tUnit Price");

 /* Pseudocode that connects with server program and requests
 the QUERYSTO service to query the stock unit price.
 The returned results will be put in audv message buffer */

if (OLTPCALL(QUERYSTO, (char *)audv, sizeof(struct audv),
 (char **) &audv,&audv_len,0) == -1)
Programming in an X/Open Environment 3-19

A Sample DTP ESQL/C Application Program
{
 /* Invoke OLTPGET CALL to get info from audv message buffer */
 /* If request fails, print the error and free up the buffer */

fprintf(stderr, "%s service failed\n%s: %s\n",
 "QUERYSTO", audv->u_errmsg);

OLTPFREE((char *) audv);
exit(-1);
}

 /* If QUERYSTO service successful, invoke routines to get info from
 message buffer */

 stock_num = audv->u_stock_code;
 void strcpy(description, audv->u_stock_des);
 void strcpy(&unit_price, &audv->u_unit_price);
 rfmtdec(&unit_price, format, decdsply); /* Format for display */
 void(printf("%d %s %s\n", stock_num, description, decdsply);

 /* Prompt user to update the item */
 printf("\nDo you want to update this record? \n");

ans = ' ';
 /*
 Update unit_price? y(es) or n(o)

*/
 while((ans = LCASE(ans)) != 'y' && ans != 'n')

{
/* Calculate the new unit_price */
decmul(&unit_price,&dpcrnt, &unit_price);
rfmtdec(&unit_price, format, decdsply); /* Format for display */

printf("\n\t. . . Update unit_price to %s ? (y/n) ", decdsply);
scanf('%1s', &ans);
}

 /* Yes I want to update the current row */
 if(ans == 'y')/* if yes, update current row */

{
 /* Make UPDATESTO service call to update the record */
 if (OLTPCALL(UPDATESTO, (char *)audv,
 sizeof(struct audv),(char **) &audv,&audv_len,0) == -1)

{
/* If service request failed, print out the error and free
 up the buffer */
fprintf(stderr, "%s service failed\n%s: %s\n",

 "UPSTOCKSTO", audv->u_errmsg);
OLTPFREE((char *) audv);
exit(-1);
}

/* If update successful, return the success call, free up the
 buffer, leave the application */

OLTPFREE((char *) audv);
if (OLTPTERM() == -1)

fprintf(stderr,"Can not terminate the application\n");
else

printf("Application completed\n");
}

}

3-20 TP/XA Programmer’s Manual

A Sample DTP ESQL/C Application Program
Sample Server Program

The server program, server.ec, is an ESQL/C program that performs the
database interface portion of the upstock.ec program. For example, the SQL
statements that access the database become the following services in the
server program:

■ The QUERYSTO service selects the data in the stock table for the
specified manufacturer code and stock number (sent in the message
buffer).

■ The UPDATESTO service performs an update of the unit_price
column of the stock table.

As Figure 3-5 on page 3-22 shows, server.ec contains the services QUERYSTO
and UPDATESTO. To retrieve a row from the stock table, the QUERYSTO
service performs the following tasks:

1. It calls the OLTPGETBUF() function to obtain the specific manufac-
turer and stock number of the stock row to select. These values are
sent into the function in the transb message buffer.

2. It performs an embedded SELECT statement that retrieves the stock
number, description, and unit price for the specified row.

3. It uses the ESQL/C risnull() function to verify that the retrieved
unit_price value is not null.

4. It stores the retrieved values in the message buffer and then calls the
OLTPRETURN() function to send back to the client the data for the
selected stock row.

To update the row, the UPDATESTO service performs the following tasks:

1. It calls the OLTPGETBUF() function to obtain the original stock row
information from the message buffer.

2. It uses an update cursor to reselect the row for update, locking the
row.

3. It compares the contents of the row with the original that was passed
back to the client during QUERYSTO. If changes were made to that
row, the update is disallowed, and an error is returned to the client.
Programming in an X/Open Environment 3-21

A Sample DTP ESQL/C Application Program
4. If no changes were made, UPDATESTO updates the unit price for the
row by the user-specified percentage.

5. Finally, UPDATESTO uses the OLTPRETURN() function to return the
update status to the client program.

Important: In this example, the OLTPGETBUF() and OLTPRETURN() functions are
pseudo functions. In an actual application, use the appropriate AP-TM calls of your
TM interface to perform these tasks.

Figure 3-5 shows the sample server program, server.ec.

Figure 3-5
Sample Pseudocode for Server Program

/*
 ** server.ec **
 The server program gets the request from the client program
 and performs the QUERYSTO and UPDATESTO services.
 QUERYSTO: Fetches rows from the stock table for a chosen

manufacturer and stock_num.
 UPDATESTO: Updates the record with the percent of the price increase.
*/

#include <stdio.h>
#include <ctype.h>
#include <decimal.h>
EXEC SQL include sqltypes.h;

/* Pseudocode to include any OLTP header files that are needed. */

#include <OLTPXA.h>
...
...
#include 'upstock.h'

struct app_buffer
{
char u_manu_code[4];
int u_stock_code;
char u_stock_des[100];
float u_percent;
char u_errmsg[100];
decimal u_unit_price;
}

.

.

.
/* End of OLTP header files */

EXEC SQL BEGIN DECLARE SECTION;
char manu_code[4];
short stock_num;
char description[16];
dec_t unit_price;

EXEC SQL END DECLARE SECTION;

char manu_code1[4];
3-22 TP/XA Programmer’s Manual

A Sample DTP ESQL/C Application Program
short stock_no;
char errmsg[400];

/* The QUERYSTO service selects the data in the stock table for the
 specified manufacturer code and stock number. Row information is
 received in the message buffer.
*/
QUERYSTO(transb)
OLTPSVCINFO *transb;
{

/*
 Setup transv pointer to point to the message buffer
*/

 struct app_buffer *transv;

 /*
 Setup the pointer to point to OLTPSVCINFO data buffer
*/

 transv = (struct app_buffer *)transb->data);

/* Pseudo Code to get the manu_code from the message buffer */
if (OLTPGETBUF(transb, manu_code1....) == -1)

{

/* call routines to check the data 'TYPE' */
OLTPRETURN(OLTPFAIL,0,transb->data,0L,0); /* Return error message */
}

/* Pseudo Code to get the stock_num from the message buffer */
if (OLTPGETBUF(transb, stock_no....) == -1)

{
/* call routines to check the data 'TYPE' */
OLTPRETURN(OLTPFAIL,0,transb->data,0L,0); /* Return error message */
}

/*
 Retrieve one row of data, no cursor is needed
*/
EXEC SQL select stock_num, description, unit_price

into :stock_num, :description,:unit_price
from stock
where manu_code = :manu_code1 and stock_num = :stock_no;

if(risnull(CDECIMALTYPE, &unit_price)) /* Skip if price is NULL */
{
fprintf(stderr, "unit_price is NULL\n");
exit(1);
}

/*
 Move one row of data into the message buffer
*/
audv->u_stock_code = stock_no;
void strcpy(audv->u_stock_des, description;
void strcpy(&audv->u_unit_price,&unit_price);

/*
 Return item's stock_num, description and unit_price to client
 program
Programming in an X/Open Environment 3-23

A Sample DTP ESQL/C Application Program
*/
OLTPRETURN(OLTPSUCESS,.. transb->data ...);

}

/* The UPDATESTO service performs an update of the unit_price column of the
 stock table.
*/
UPDATESTO(transb)
OLTPSVCINFO *transb;
{

struct app_buffer *transv; /* Setup transv to point to the message buffer */
char pre_manu_code1[4];
short pre_stock_no;
char pre_description[16];
decimal pre_unit_price;

EXEC SQL BEGIN DECLARE SECTION;
dec_t unit_price;

EXEC SQL BEGIN DECLARE SECTION;

/*
 Setup the pointer to point to OLTPSVCINFO data buffer
 */
transv = ((struct app_buffer *)transb->data);

/*
 Get the stock row info from message buffer and store the info
 for later comparsion. This ensures that the data the client
 wants to update is current.
 */

pre_stock_no = audv->u_stock_code;
void strcpy(description,audv->u_stock_des);
void strcpy(&pre_unit_price, &audv->u_unit_price);

EXEC SQL declare upcurs cursor for /* setup cursor for update */
select stock_num, description, unit_price from stock
where manu_code = :manu_code and stock_num = :stock_num
for update of unit_price;

if (OLTPGETBUF(transb, unit_price....) == -1)
{
/* call routines to check the data 'TYPE' */

OLTPRETURN(OLTPFAIL,0,transb->data,0L,0); /* Return error message */
}

EXEC SQL fetch upcurs into :stock_num,:description, :unit_price;
err_chk("FETCH udcurs");

/* Compare the record retrieved from QUERYSTO and the current
 query to check for data consistency. If data is not consistent,
 stop updating and return error to client, else update the record;
*/

/* Invoke routines to compare data from QUERYSTO and fetch
 data where pre* is data previously retrieved and $* is most current data.
*/
3-24 TP/XA Programmer’s Manual

A Sample DTP ESQL/C Application Program
if (COMPARE(pre*, $*) == -1)
{
fprintf(stderr,"Data inconsistent update request ignored \n");
OLTPRETURN(OLTPFAIL,0,transb->data,0L,0); /* Return error message */
}

EXEC SQL update stock set unit_price = :unit_price
where current of upcurs;

err_chk("UPDATE upcurs");

/*
 Return update success message to client program
*/
OLTPRETURN(OLTPSUCESS,.. transb->data ...);

}

/*
 err_chk() checks sqlca.sqlcode and if an error has occurred, it uses
 rgetmsg() to display the message for the error number in sqlca.sqlcode.
*/

err_chk(name)
char *name;
{
 if(sqlca.sqlcode < 0)
 {
 rgetmsg((short)sqlca.sqlcode, errmsg, sizeof(errmsg));
 fprintf(stder,"\n\tError %d during %s: %s\n",sqlca.sqlcode, name, errmsg);
 exit(1);
 }
 return((sqlca.sqlcode == SQLNOTFOUND) ? 0 : 1);
}

♦

Programming in an X/Open Environment 3-25

A
Appendix
XA Routine Return Codes
This appendix contains a listing of the XA functions and their
return codes. The XA functions make up the XA interface, which
allows the TM and the RM to communicate information about
global transactions. These functions are defined by the X/Open
DTP interface to begin with the string xa_. These routines are
only templates. The actual function names are internal to the RM.
They are defined in the XA library. For more information on the
XA interface, see Chapter 1, “Informix and the X/Open
Distributed Transaction-Processing Model.”

Important: This appendix assumes that you are familiar with the
“Informix Guide to SQL: Syntax," the “INFORMIX-ESQL/C
Programmer’s Manual,” or the “INFORMIX-ESQL/COBOL
Programmer’s Manual," and “Distributed TP: The XA Specification.”

The following table shows the xa_ routines listed in this appendix.

Figure A-1 on page A-3 lists the xa_ routines and their return values. Each
return code occurs because of one or more circumstances listed in the Reason
for Return Codes column. The XA interface establishes the following naming
conventions used in these return values:

■ Error codes (negative values) are constants whose names begin with
the string XAER_.

■ Status codes (non-negative values) are constants whose names begin
with the string XA_.

In addition to the error information listed in this appendix, the database
server always returns a result code when you execute an SQL statement. This
result code, along with other information about the operation, is returned in
a global variable called SQLSTATE and in a data structure known as the SQL
Communication Area (SQLCA). For further information about SQLCA,
consult the Informix Guide to SQL: Tutorial.

XA Function Purpose

xa_close() Terminates use of an RM by an AP

xa_commit() Tells the RM to commit a transaction branch

xa_complete() Tests for completion of an xa_ operation

xa_end() Dissociates a thread from a transaction branch

xa_forget() Tells the RM to discard its knowledge of a heuristically completed
transaction branch

xa_open() Initializes an RM for an AP to use

xa_prepare() Asks the RM to prepare to commit a transaction branch

xa_recover() Gets a list of XIDs that the RM has prepared or heuristically
completed

xa_rollback() Tells the RM to roll back a transaction branch

xa_start() Starts a transaction branch
A-2 TP/XA Programmer’s Manual

Figure A-1
XA Functions and Their Return Values

XA Function Return Code Reason for Return Code

xa_close() XAER_INVAL Invalid arguments were specified for this
routine.

The xa_info argument is a null pointer.

XAER_PROTO Execution was between an xa_start() function
and an xa_end() function for a global trans-
action branch when this routine was called.

The rmid argument is not the same as that
passed to xa_open().

XAER_RMERR The database server failed.

An internal communication error occurred
between the application development tool
and the database server.

The database server encountered failure on
close of database.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

xa_commit() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine called before a call to xa_open().

The transaction branch was active or
suspended.

The rmid argument is not the same as that
passed to xa_open().

The TMONEPHASE flag was passed in the flags
argument, and the transaction branch was
already prepared for commit.

(1 of 10)
XA Routine Return Codes A-3

The TMONEPHASE flag was not passed in the
flags argument, and the transaction branch
has not yet been prepared for commit.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR An internal communication error occurred
between the application development tool
and the database server.

The database server could not find deferred
constraint information, probably because of
memory corruption.

The database server encountered an error
while freeing the shared-memory transaction
entry.

The database server encountered a failure
during write of commit record (during two-
phase commit).

XA_RBTRANSIENT Execution was between an xa_start() function
and an xa_end() function on another trans-
action branch when this call occurred. The
database server was unable to save the state
of the current transaction branch to perform
the commit.

XA_RBINTEGRITY The database server encountered a constraint
error while checking deferred constraints.

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

XA_HEURRB Due to a heuristic decision, the database
server has already rolled back the transaction
branch.

XA Function Return Code Reason for Return Code

(2 of 10)
A-4 TP/XA Programmer’s Manual

XA_RBOTHER The TMONEPHASE flag was passed in the flags
argument, and the transaction branch was
marked for rollback only, probably due to a
long transaction.

XA_RBROLLBACK The TMONEPHASE flag was passed in the flags
argument, and the commit failed. The
database server has rolled back the trans-
action branch.

xa_complete() XAER_PROTO The database server does not support
asynchronous operations.

xa_end() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine was called before a call to
xa_open().

The TMMIGRATE flag is passed in the flags
argument, but transaction migration is not
supported.

The rmid argument is not the same as that
passed to xa_open().

This routine has been called in an improper
context.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR The database server encountered failure on
suspension of transaction branch, probably
because of a memory-allocation error.

An internal communication error occurred
between the application development tool
and the database server.

XA Function Return Code Reason for Return Code

(3 of 10)
XA Routine Return Codes A-5

The database server encountered a failure
while attempting to save deferred constraint
information—a resource-allocation error.

XA_RBOTHER The TMSUCCESS flag was passed in the flags
argument, and this is a suspended-trans-
action branch. The implicit resumption of the
transaction branch failed.

The database server has marked the trans-
action branch for rollback only, probably due
to a long transaction.

XA_RBROLLBACK The TMFAIL flag was passed in the flags
argument.

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

xa_forget() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine was called before a call to
xa_open().

The rmid argument is not the same as that
passed to xa_open().

This transaction branch was not heuristically
completed.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR An internal communication error occurred
between the application development tool
and the database server.

The database server encountered a failure on
write of end-transaction record.

XA Function Return Code Reason for Return Code

(4 of 10)
A-6 TP/XA Programmer’s Manual

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

xa_open() XAER_INVAL Invalid arguments were specified for this
routine.

The xa_info argument is a null pointer.

The xa_info string is too long (greater than
MAXINFOSIZE).

No database name was given or database
name is too long.

A non-XA connection to the database server
already exists.

Database does not exist.

Database does not have logging.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR This routine was unable to connect to the
database server.

An internal communication error occurred
between the application development tool
and the database server.

The database server was unable to open the
database (for a reason other than it does not
exist or it has no logging).

xa_prepare() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine was called before a call to
xa_open().

A transaction branch was active or
suspended.

XA Function Return Code Reason for Return Code

(5 of 10)
XA Routine Return Codes A-7

The rmid argument is not the same as that
passed to xa_open().

The transaction branch was already prepared
for commit.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions with the TMASYNC flag passed in the
flags argument.

XAER_RMERR An internal communication error occurred
between the application development tool
and the database server.

The database server could not find deferred
constraint information, probably because of
memory corruption.

The database server encountered an error
while freeing the shared-memory transaction
entry. (The entry is only freed if the prepare
fails and the transaction branch is rolled back
or the branch was read only.)

XA_RBTRANSIENT Execution was between an xa_start() function
and an xa_end() function on another trans-
action branch when this call occurred. The
database server was unable to save the state
of the current transaction branch to perform
the prepare.

XA_RBINTEGRITY The database server encountered a constraint
error while checking deferred constraints.

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

XA_RBOTHER The database server has marked this trans-
action branch as rollback only, probably
because of a long transaction.

XA Function Return Code Reason for Return Code

(6 of 10)
A-8 TP/XA Programmer’s Manual

XA_RDONLY This transaction branch was read only and
has been committed.

XA_RBROLLBACK The database server rolled back the trans-
action branch because of a failure during
write of the prepare log record.

xa_recover() XAER_INVAL Invalid arguments were specified for this
routine.

The xids argument is null, and the count
argument is greater than 0.

The count argument is less than 0.

XAER_PROTO This routine was called before a call to
xa_open().

The rmid argument is not the same as that
passed to xa_open().

This routine has been called in an improper
context.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR The database server encountered a memory-
allocation error.

The number of XIDs returned is greater than
or equal to 0.

xa_rollback() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine was called before a call to
xa_open().

The rmid argument is not the same as that
passed to xa_open().

XA Function Return Code Reason for Return Code

(7 of 10)
XA Routine Return Codes A-9

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR An internal communication error occurred
between the application development tool
and the database server.

The database server could not find deferred
constraint information, probably because of
memory corruption.

The database server encountered an error
while freeing the shared-memory transaction
entry.

The database server failed to roll back the
transaction branch.

XA_RBTRANSIENT Execution was between an xa_start() function
and an xa_end() function on another trans-
action branch when this call occurred. The
database server was unable to save the state
of the current transaction branch to perform
the rollback.

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

XA_HEURRB Because of a heuristic decision, the database
server has already rolled back the transaction
branch.

xa_start() XAER_INVAL Invalid arguments were specified for this
routine.

XAER_PROTO This routine was called before a call to
xa_open().

XA Function Return Code Reason for Return Code

(8 of 10)
A-10 TP/XA Programmer’s Manual

TMRESUME was passed in the flags argument,
and the transaction branch was not
suspended by this user.

TMRESUME was not passed in the flags
argument, and the transaction branch was
suspended by this user.

The rmid argument is not the same as that
passed to xa_open().

This routine has been called in an improper
context.

XAER_RMFAIL The database server failed.

XAER_ASYNC The database server encountered an error
while implementing asynchronous opera-
tions when the TMASYNC flag was passed in
the flags argument.

XAER_RMERR Resume of the transaction branch failed. The
database server could not find the suspended
context, probably because of memory
corruption.

An internal communication error occurred
between the application development tool
and the database server.

The database server could not find deferred
constraint information, probably because of
memory corruption.

The database server could not allocate a new
transaction branch because it ran out of
entries in the transaction table.

The begin work operation for this transaction
branch failed.

XAER_OUTSIDE A local transaction is open and must be
committed or rolled back before calling
xa_start().

XA Function Return Code Reason for Return Code

(9 of 10)
XA Routine Return Codes A-11

XAER_DUPID The database server was expecting to allocate
a new transaction branch, but the XID already
exists. Neither TMJOIN nor TMRESUME flag
has been passed in as part of the flags
argument.

XAER_NOTA The database server could not find the trans-
action branch indicated by the xid argument.

XA_RBOTHER The database server has marked this trans-
action branch as rollback only, probably due
to a long transaction.

XA Function Return Code Reason for Return Code

(10 of 10)
A-12 TP/XA Programmer’s Manual

Index

Index
A
ACID test properties 1-4, 1-5, 1-24
ANSI compliance

level Intro-11
Application Program (AP)

definition 1-12, 1-13
interface to RM. See AP-to-RM

interface (AP-RM).
interface to TM. See AP-to-TM

interface (AP-TM).
sample client program 3-17
sample server program 3-16, 3-21
using transaction modes 3-5

Application programming
creating databases 2-8
creating temporary tables 3-8
designing programs for X/Open

environment 3-4, 3-7
preparing for X/Open

environment 3-3
using cursors 3-8
using SQL statements 3-9

AP-RM. See AP-to-RM interface
(AP-RM).

AP-TM. See AP-to-TM interface
(AP-TM).

AP-to-RM interface (AP-RM)
definition 1-23
including 3-13

AP-to-TM interface (AP-TM)
definition 1-23, 1-24
including 3-12
sample calls 3-16
uses of 3-4, 3-7

AP. See Application Program (AP).
Atomicity (ACID test property) 1-4

B
BEGIN WORK statement 1-8, 1-16,

3-10, 3-11

C
Client program

benefits 1-7
communicating with server 1-18
definition 1-6, 3-4
in an X/Open AP 1-13
in DTP model 1-6
linking in AP-TM 1-24, 1-26
sample program 3-17

client.c program 3-17
Client/server architecture, for DTP

model 1-6
CLOSE DATABASE statement 3-9,

3-11
Close string 2-6, 2-7
Comment icons Intro-7
COMMIT logical-log record 2-12,

2-13
COMMIT WORK statement 1-8,

1-16, 3-10, 3-11
Compliance

with industry standards Intro-11
Configuration parameter

LTXEHWM 2-15
LTXHWM 2-15

CONNECT statement 3-9
Consistency (ACID test

property) 1-4
Coordinator 1-10, 1-15, 1-20

CREATE DATABASE
statement 3-9, 3-11

Cursors (database), in an X/Open
DTP environment 3-8

D
Database

ANSI-compliant 2-8
as a shared resource 1-14
creation requirements under

X/Open 2-8
determining if inconsistent 2-15
heterogeneous 1-5

Database Management System
(DBMS) 1-8, 1-14

DATABASE statement 3-9, 3-11
Default locale Intro-4
Demonstration database Intro-4
DISCONNECT statement 3-9
Distributed Transaction Processing

(DTP)
client program 1-6
definition 1-4, 1-5
features of 1-5
global transaction 1-7
local transaction 1-7
server program 1-6
two-phase commit protocol 1-10
X/Open model. See X/Open DTP

model.
See also Transaction processing.

Distributed transaction. See Global
transaction.

Documentation conventions
icon Intro-7
typographical Intro-6

Documentation notes Intro-10
Documentation, types of

documentation notes Intro-10
error message files Intro-10
on-line manuals Intro-9
printed manuals Intro-9
related reading Intro-11
release notes Intro-10

DTP. See Distributed Transaction
Processing (DTP).

Durability (ACID test property) 1-4

E
en_us.8859-1 locale Intro-4
Error message files Intro-10
esql command 3-12
Explicit local transaction 3-6

F
Feature icons Intro-8

G
Global Language Support

(GLS) Intro-4
 Global transaction

See also Local transaction,
Transaction branch.

Global transaction
as transaction mode 3-6
committing 2-14
creating long transaction 2-15
definition 1-7, 1-16, 3-6
heuristic decisions 1-22, 2-14
identifier. See Global Transaction

Identifier (GTRID).
locks in 1-28, 2-8, 3-9, 3-11
management of 1-20, 2-11
monitoring with onstat 2-8
return behavior of SQL

statements 3-11
with two-phase commit

protocol 1-10
XA interface requirements 1-24

Global Transaction Identifier
(GTRID)

after a heuristic decision 1-22
definition 1-17
interpreted by RM 1-15
using to analyze database

inconsistency 2-16
using to recover from database

inconsistency 2-16
GTRID. See Global Transaction

Identifier (GTRID).

H
Heuristic decision

definition 1-22
determining database

inconsistency 2-15
handled by RM 1-22, 2-14
handled by the database

server 2-15
handled by TM 1-22

HEURTX logical-log record 2-15,
2-16

I
Icons

comment Intro-7
feature Intro-8
platform Intro-8

Implicit local transaction 3-5
Industry standards, compliance

with Intro-11
INFORMIX database server

as Resource Manager 1-14
Informix Database Server

aborting a transaction 2-14
close string 2-7
configuration parameters 2-15
database creation

requirements 2-8
in two-phase commit 2-12
integrating with Transaction

Manager 2-5
long transaction 2-15
making a heuristic decision 2-14,

2-15
open string 2-7
role in two-phase commit 2-11
threads 2-8

Informix DBMS
as Resource Manager 1-28
responding to XA requests 1-28
tracking XIDs 1-28

INFORMIX-TP/XA library
benefits of using 1-29
building OLTP applications 1-12
in a server program 1-15, 1-26
installing 2-4
2 TP/XA Programmer’s Manual

naming 2-7
routine names 1-24
supporting XA interface 1-24, 1-28
when needed 1-26

Interface
AP-RM 1-23
AP-RM. See AP-to-RM interface

(AP-RM).
AP-TM. See AP-to-TM interface

(AP-TM).
definition 1-23
in X/Open DTP model 1-23
XA. See XA interface.

ISO 8859-1 code set Intro-4
Isolation (ACID test property) 1-4

L
Local transaction

as transaction mode 3-5
definition 1-7, 1-16, 3-5
examples of 3-5
explicit 3-6
handled by RM 1-16
handled by TM 1-16, 1-20
implicit 3-5
return behavior of SQL

statements 3-11
Locale Intro-4
LOCK TABLE statement 3-9, 3-11
Locking in an X/Open DTP

environment 1-28, 2-8, 3-9
Logical-log record

COMMIT 2-12, 2-13
HEURTX 2-15, 2-16
purpose of 2-11
ROLLBACK 2-12, 2-13, 2-15
using to recover from database

inconsistency 2-16
XAPREPARE 2-12, 2-13, 2-15, 2-16

Long transaction (LTX) 2-15
LTXEHWM configuration

parameter 2-15
LTXHWM configuration

parameter 2-15
LTX. See Long transaction.

M
Machine notes Intro-10
Message file

error messages Intro-10
Modularity, as benefit of client-

server model 1-7

O
On-line manuals Intro-9
onstat utility

monitoring global
transactions 2-8

transactions section 2-10
-u option 2-9
users sections 2-9
-x option 2-10

Open string 2-6, 2-7, 3-9

P
Participant 1-10, 1-14, 1-20
Platform icons Intro-8
Postdecision phase 1-11, 1-22, 2-12
Precommit phase 1-11, 1-22, 2-12
Printed manuals Intro-9

R
Related reading Intro-11
Release notes Intro-10
Resource Manager (RM)

as participant 1-20
closing 1-21
definition 1-12, 1-14
explicit local transactions 3-6
handling a local transaction 1-16
in two-phase commit 1-20, 2-12
Informix DBMS as 1-14, 1-27, 1-28
interface to AP. See AP-to-RM

interface (AP-RM).
interface to TM. See XA interface.
making a heuristic decision 1-22,

2-14
name 2-6

native RM API 1-23, 1-24
opening 1-21
transaction commitment and

recovery 2-11
RM. See Resource Manager (RM).
ROLLBACK logical-log record 2-12,

2-13, 2-15
ROLLBACK WORK statement 1-8,

3-10, 3-11

S
Sample program

client program 3-17
server program 3-21
upstock 3-14

Server program
benefits 1-7
building 3-12
communicating with client 1-18
definition 1-6, 3-4
in an X/Open AP 1-15
in DTP model 1-6
linking in AP-RM library 3-13
linking in AP-TM 1-24, 1-26
linking in XA library 3-13
sample program 3-21

server.ec program 3-21
Service

definition 1-6, 3-4
opening and closing cursors from

within 3-8
using temporary tables in 3-8

Service request 1-6, 1-13, 1-15
SET CONNECTION statement 3-10
SET EXPLAIN statement 3-10, 3-11
SET ISOLATION statement 3-10,

3-11
SET LOCK MODE statement 3-10,

3-11
SET LOG statement 3-10, 3-11
Shared-memory request queue 1-20
Software dependencies Intro-4
sqexplain.out file 3-10, 3-11
SQL statements in an X/Open DTP

environment 3-9
Switch table 2-6, 2-7
Index 3

System administration
information needed by the TM 2-5
recovering from database

inconsistency 2-16
setting the open string

parameter 2-6
tracking global transactions 2-8

T
Table, temporary, creating in a

service 3-8
tbstat utility. See onstat utility.
Thread 2-8
TM. See Transaction Manager (TM).
Transaction

aborting 1-22, 2-14
ACID test 1-4, 1-5
branch. See Transaction branch.
definition 1-4
determining ownership 2-8
determining state of 1-22, 2-10,

2-14
distributed. See Global

transaction.
explicit local 3-6
global. See Global transaction.
heterogeneous 1-25, 1-29
implicit local 3-5
local. See Local transaction.
long. See Long transaction (LTX).
relationship to a thread 2-8
transaction modes 3-5

 Transaction branch
See also Global transaction.

Transaction branch
aborting 1-22
and locking 1-28, 2-8, 3-9, 3-10
branch qualifier 1-17
committing 1-11, 1-22, 2-14
identifier. See Transaction

identifier (XID).
Informix implementation of 1-28
multiple branches 1-10
preparing to commit 1-11
rolling back 1-11

Transaction identifier (XID) 1-14,
1-17

tracking 1-28
using to analyze database

inconsistency 2-16
Transaction management

commitment and recovery 2-11
of global transactions 1-20
recovering from database

inconsistency 2-16
responsibility for 1-15
tracking 2-8

Transaction Manager (TM)
as coordinator 1-15, 1-20
assigning XIDs 1-17
communicating with RMs 1-21
definition 1-12, 1-15
ensuring ACID test 1-24
explicit local transactions 3-6
handling global transaction 1-17,

2-11
handling heuristic decisions 1-22
handling local transaction 1-16,

1-20
in client/server

communication 1-18
in two-phase commit 1-20, 2-11
INFORMIX-TP/XA

requirements 1-28
installing 2-4
integrating the database

server 2-5
interface to AP. See AP-to-TM

interface (AP-TM).
interface to RM. See XA interface.
managing client/server

communication 1-18
managing transactions 1-16
shared-memory request

queue 1-20
switch table 2-6
transaction commitment and

recovery 2-11
Transaction mode 3-5

Transaction processing
ACID test properties 1-4, 1-5
definition 1-4
required capabilities 1-4
X/Open DTP model 1-3
See also Distributed Transaction

Processing (DTP).
Transactions section of onstat

utility 2-10
Two-phase commit protocol

coordinator 1-10, 1-15, 1-20
definition 1-10
flow of information between

Transaction Manager and
Resource Manager 1-6, 1-15,
2-13

goal of 1-11
making a heuristic decision 1-22,

2-14
participant 1-10, 1-14, 1-20
postdecision phase 1-11, 1-22, 2-12
precommit phase 1-11, 1-22, 2-12
recovering from database

inconsistency 2-16
role of the database server 2-11
XA interface requirement 1-24

U
Unbuffered logging 3-10
Universal Server RM. See

INFORMIX-Universal Server.
UNLOCK TABLE statement 3-10,

3-11

X
XA interface

close string 2-6, 2-7
definition 1-23, 1-24
open string 2-6, 2-7
switch table 2-6, 2-7

XA interface library
xa.h header file 2-6
xa_close() 1-21, 2-7, A-3
xa_commit() 1-21, 2-12, 2-13, A-3
xa_complete() A-5
xa_end() 3-8, A-5
4 TP/XA Programmer’s Manual

xa_forget() A-6
xa_open() 1-21, 2-7, A-7
xa_prepare() 1-21, 2-12, 2-13, A-7
xa_recover() A-9
xa_rollback() 1-21, 2-12, 2-13, A-9
xa_start() 3-8, A-10

XA interface standard
ensuring ACID test 1-24
transactions 1-16
what INFORMIX-TP/XA

supports 1-29
XA Routine Library Name 2-6
XAPREPARE logical-log

record 2-12, 2-13, 2-15, 2-16
xa.h header file 2-6
xa_close() XA interface

routine 1-21, 2-7, A-3
xa_commit() XA interface

routine 1-21, 2-12, 2-13, A-3
xa_complete() XA interface

routine A-5
xa_end() XA interface routine 3-8,

A-5
xa_forget() XA interface routine A-6
xa_open() XA interface

routine 1-21, 2-7, A-7
xa_prepare() XA interface

routine 1-21, 2-12, 2-13, A-7
xa_recover() XA interface

routine A-9
xa_rollback() XA interface

routine 1-21, 2-12, 2-13, A-9
xa_start() XA interface routine 3-8,

A-10
xa_switch_t structure 2-6
XID. See Transaction identifier

(XID).
X/Open compliance

level Intro-11
X/Open DTP model

Application Program (AP) 1-12,
1-13

behavior of SQL statements in 3-9
building servers 3-12
creating a client 3-4
creating a server 3-4
defining a service 3-4
definition 1-12
global transaction 1-16, 2-8, 3-6

interfaces 1-23
local transaction 1-16, 3-5
Resource Manager (RM) 1-12,

1-14, 2-6
software required for 2-3
Transaction Manager (TM) 1-12,

1-15, 1-18
two-phase commit protocol 1-20,

1-24
using cursors 3-8
using SQL statements in 3-9
with Informix DBMS 1-14, 1-28
XA interface. See XA interface

standard
Index 5

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature, Product, and Platform Icons

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes
	Related Reading

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	Informix and the �X/Open Distributed Transaction- ...
	Distributed Transaction Processing
	Transaction Processing
	Features of a DTP System
	Client and Server Programs
	Local and Global Transactions
	Two-Phase Commit Protocol

	The X/Open DTP Model
	The Application Program
	The Resource Manager
	The Transaction Manager
	Managing Transactions
	Assigning Transaction Identifiers
	Managing Client/Server Communication
	Controlling the Two-Phase Commit

	The Model Interfaces
	The AP-to-RM Interface
	The AP-to-TM Interface
	The XA Interface

	Software Products and the X/Open DTP Model
	Third-Party TM Software
	Informix Software for the RM
	The Informix Database Server as an RM
	The TP/XA Library as the Server XA Interface

	What TP/XA Can Do for You

	Integrating the Database Server and TP/XA into the...
	Installing Software for an X/Open DTP Environment
	Installing the Transaction Manager
	Installing the Informix Software
	Integrating the Database Server with the TM
	Describing the Database Server RM
	Database Logging in an X/Open DTP Environment

	Monitoring Global Transactions
	The Userthreads Section
	The Transactions Section

	Transaction Commitment and Recovery
	The Database Server and the Two-Phase Commit Proto...
	The Database Server and Heuristic Decisions
	Causing the Database Server to Make a Heuristic De...
	Determining Consistency of an Informix Database
	Taking Actions to Handle Database Inconsistency

	Programming in an X/Open Environment
	Preparing to Program in an X/Open DTP Environment
	Designing Programs for an X/Open DTP Environment
	Identifying the Transaction Mode
	Local Transactions
	Global Transactions

	Writing Server Programs for an X/Open DTP Environm...
	Programming Considerations for Server Programs
	Using Cursors
	Using Temporary Tables
	Using Locking
	Using SQL Statements

	Building Servers for an X/Open DTP Environment

	Sample ESQL/C Programs
	A Non-DTP ESQL/C Program
	A Sample DTP ESQL/C Application Program
	Sample Client Program
	Sample Server Program

	XA Routine Return Codes
	Index

